Skip to main content

Retinal pigment epithelium translocation and central visual function in age related macular degeneration: preliminary results

  • Chapter
  • 184 Accesses

Abstract

Purpose: To test the feasibility of a new surgical technique, and to assess visual function over the translocated retinal pigment epithelium (RPE) cells in patients operated upon for subfoveal choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD). Materials and methods: Six patients presenting previously untreated exudative AMD underwent surgical excision of the subfoveal CNV with RPE translocation and were followed from 1 to 10.5 months. The surgery consisted of a standard three port pars plana vitrectomy (TPPPV), excision of the CNV and RPE translocation. Pre and post-operative ocular examination included best-corrected visual acuity measurement, fundus color stereo photography and fundus fluorescein angiography. Optical coherence tomography (OCT) and confocal laser scanning ophthalmoscopy (cLSO) were performed post-operatively. A cross fixation target and a single-point flashing light were projected on different areas of the posterior pole using a cLSO. Photopic 10–2 perimetry, photopic fine matrix mapping, cLSO microperimetry were also performed pre and post-operatively in four patients. OCT cross-sectional scans and cLSO RPE autofluorescence were recorded to detect the presence of viable translocated RPE. Visual acuity, fixation, photopic 10–2 perimetry, photopic fine matrix mapping and cLSO microperimetry were tested for the presence of central visual function. Results: RPE could be effectively translocated at the time of CNV removal from the edge of the RPE defect to a subfoveal location. OCT showed the translocated RPE as an area of increased optical reflectivity with optical shadowing external to it. cLSO showed autofluorescence of the translocated RPE. The cross fixation target was seen when projected on the translocated RPE. During eccentric fixation, the patients could see a flashing point-target projected on the translocated RPE. Photopic 10–2 perimetry, photopic fine matrix mapping and cLSO microperimetry showed presence of central visual function. Conclusions: The authors propose that translocation of RPE at the time of CNV removal, from the edge of the RPE defect to a subfoveal location, may have a role in the surgical management of AMD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans J. Causes of blindness and partial sight in England and Wales 1990–1991. Studies on medical and population subjects No. 57. Office of Population Censuses and Surveys, London, UK. Her Majesty’s Stationary Office Publications Centre, London, UK 1995.

    Google Scholar 

  2. Leibowitz HM, Krueger DE, Mauder LR, et al. The Framing-ham Eye Study Monograph, 1973–75. Surv Ophthalmol 1988; 24(Suppl): 335–610.

    Google Scholar 

  3. Schachat AP. Management of subfoveal choroidal neovascu-larization. Arch Ophthalmol 1991; 109(9): 1217–1218

    Article  PubMed  CAS  Google Scholar 

  4. Macular Photocoagulation Study Group. Argon laser pho-tocoagulation for senile macular degeneration: results of a randomized clinical trial. Arch Ophthalmol 1982; 100: 912–918.

    Article  Google Scholar 

  5. Macular Photocoagulation Study Group. Laser photocoagulation for subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Arch Ophthalmol 1991; 109: 1220–1231.

    Article  Google Scholar 

  6. Thomas MA, Kaplan HJ. Surgical removal of subfoveal choroidal neovascularization in the presumed ocular histoplas-mosis syndrome. Am J Ophthalmol 1991; 111: 1–7.

    PubMed  CAS  Google Scholar 

  7. Thomas MA, Dickinson JD, Melberg NS et al. Visual results after surgical removal of subfoveal choroidal neovascular membranes. Ophthalmology 1994; 101(8): 1384–1396.

    PubMed  CAS  Google Scholar 

  8. Eckstein M, Wells JA, Aylward GW, Gregor Z. Surgical removal of non-age-related subfoveal choroidal neovascular membranes. Eye 1998; 12: 775–780.

    Article  PubMed  Google Scholar 

  9. Hsu JK, Thomas MA, Ibanez H, Green WR. Clinicopatho-logic studies of an eye after submacular membranectomy for choroidal neovascularization. Retina 1995; 15(1): 43–52.

    Article  PubMed  CAS  Google Scholar 

  10. Algvere PV, Berglin L, Gouras P, Sheng Y. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefe’s Arch Clin Exp Ophthalmol 1994; 232(12): 707–716.

    Article  CAS  Google Scholar 

  11. Algvere PV, Berglin L, Gouras P et al. Transplantation of RPE in age-related macular degeneration: observations in dis-ciform lesions and dry RPE atrophy. Graefe’s Arch Clin Exp Ophthalmol 1997; 235(3): 149–158.

    Article  CAS  Google Scholar 

  12. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: I. Experimental studies in the rabbit eye. Graefes Arch Clin Exp Ophthalmol 1993; 231: 629–641

    Article  PubMed  CAS  Google Scholar 

  13. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration? Graefes Arch Clin Exp Ophthalmol 1993; 231: 635–641.

    Article  PubMed  CAS  Google Scholar 

  14. Seaber JH, Machemer R. Adaptation to monocular torsion after macular translocation. Graefes Arch Clin Exp Ophthalmol 1997; 235: 76–81.

    Article  PubMed  CAS  Google Scholar 

  15. Eckardt C, Eckardt U, Conrad HG. Macular rotation with and without counter-rotation of the globe in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1999; 237(4): 313–325

    Article  PubMed  CAS  Google Scholar 

  16. Wolf S, Lappas A, Weinberger AW, Kirchhof B. Macular translocation for surgical management of subfoveal choroidal neovascularizations in patients with AMD: first results. Graefes Arch Clin Exp Ophthalmol 1999; 237: 51–57.

    Article  PubMed  CAS  Google Scholar 

  17. de Juan E Jr., Loewenstein A, Bressler NM, Alexander J. Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am J Ophthalmol 1998; 125: 635–646.

    Article  PubMed  Google Scholar 

  18. Lewis H, Kaiser PK, Lewis S, Estafanous M. Macular translocation for subfoveal choroidal neovascularization in age-related macular degeneration: a prospective study. Am J Ophthalmol 1999; 128(2): 135–146.

    Article  PubMed  CAS  Google Scholar 

  19. Akduman L, Karavellas MP, MacDonald JC, Olk RJ, Freeman WR Macular translocation with retinotomy and retinal rotation for exudative age-related macular degeneration. Retina 1999; 19(5): 418–423.

    Article  PubMed  CAS  Google Scholar 

  20. Ninomiya Y, Lewis JM, Hasegawa T, Tano Y. Retinotomy and foveal translocation for surgical management of subfoveal choroidal neovascular membranes Am J Ophthalmol 1996; 122: 613–621.

    PubMed  CAS  Google Scholar 

  21. FujikadoT, Ohji M, Hayashi A, Kusaka S, Tano Y. Anatomic and functional recovery of the fovea after foveal translocation surgery without large retinotomy and simultaneous excision of a neovascular membrane. Am J Ophthalmol 1998; 126: 839–842.

    Article  PubMed  CAS  Google Scholar 

  22. Committee on Ophthalmic Procedures Assessment Retina Panel. Ophthalmic Procedure Preliminary Assessment: Macular Translocation. Ophthalmol 2000; 107:1015–1018.

    Article  Google Scholar 

  23. Woon WH, Fitzke FW, Chester GH et al. The scanning laser ophthalmoscope. Basic principles and applications. J Ophthalm Photography 1990; 12(1): 17–23.

    Google Scholar 

  24. von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 1995; 79: 407–412.

    Article  Google Scholar 

  25. von Rückmann A, Fitzke FW, Bird AC. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 1997; 38: 478–486.

    Google Scholar 

  26. Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254:1178–81.

    Article  Google Scholar 

  27. Hee MR, Izatt JA, Swanson EA et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995; 113: 325–332.

    Article  PubMed  CAS  Google Scholar 

  28. Puliafito CA, Hee MR, Lin CP et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995; 102: 217–229.

    PubMed  CAS  Google Scholar 

  29. Gass JDM. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Am J Ophthalmol 1994; 118: 285–298.

    PubMed  CAS  Google Scholar 

  30. Nasir MA, Sugino I, Zarbin MA. Decreased choriocapillaris perfusion following surgical excision of choroidal neovascular membranes in age-related macular degeneration. Br J Ophthalmol 1997; 81(6): 481–489.

    Article  PubMed  CAS  Google Scholar 

  31. Gouras P, Lopez R, Brittis M, Kjeldbye H. The ultrastructure of transplanted rabbit retinal epithelium. Graefe’s Arch Clin Exp Ophthalmol 1992; 230(5): 468–475.

    Article  CAS  Google Scholar 

  32. Ho TC, Del Priore LV. Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human Bruch’s membrane. Invest Ophthalmol Vis Sci 1997; 38(6): 1110–1118.

    PubMed  CAS  Google Scholar 

  33. Del Priore LV, Tezel TH. Reattachment rate of human retinal pigment epithelium to layers of human Bruch’s membrane. Arch Ophthalmol 1998; 116(3): 335–341.

    PubMed  Google Scholar 

  34. Lane C, Boulton M, Marshall J. Transplantation of retinal pigment epithelium using a pars plana approach. Eye 1989; 3 (Pt 1): 27–32.

    Article  PubMed  Google Scholar 

  35. Wongpichedchai S, Weiter JJ, Weber P, Dorey CK. Comparison of external and internal approaches for transplantation of autologous retinal pigment epithelium. Invest Ophthalmol Vis Sci 1992; 33(12): 3341–3352.

    PubMed  CAS  Google Scholar 

  36. Rezai KA, Kohen L, Wiedemann P, Heimann K. Iris pigment epithelium transplantation. Graefe’s Arch Clin Exp Ophthalmol 1997; 235(9): 558–562.

    Article  CAS  Google Scholar 

  37. Tezel TH, Del Priore LV, Kaplan HJ. Harvest and storage of adult human retinal pigment epithelial sheets. Curr Eye Res 1997; 16(8): 802–809.

    Article  PubMed  CAS  Google Scholar 

  38. Durlu YK, Tamai M. Transplantation of retinal pigment epithelium using viable cryopreserved cells. Cell Transplant. 1997; 6(2): 149–162.

    Article  PubMed  CAS  Google Scholar 

  39. Peyman GA, Blinder KJ, Paris CL et al. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg 1991; 22(2): 102–108.

    PubMed  CAS  Google Scholar 

  40. Herzberg L. Creutzfeld-Jakob disease and corneal grafts. Med J Aust 1979; 1(6): 248.

    PubMed  CAS  Google Scholar 

  41. Tarkkanen A, Haltia. Creutzfeld-Jakob disease. Trans Oph-thalmol Soc UK 1980; 100(Pt 1): 151–154.

    CAS  Google Scholar 

  42. Cathala F, Moreau-Dubois MC, Brown P. Creutzfeld-Jakob disease: recent advances; biology of unconventional viruses. Pathol Biol (Paris) 1980; 28(8): 545–553.

    CAS  Google Scholar 

  43. von Ruckmann A, Fitzke FW, Bird AC. Distribution of pigment epithelium autofluorescence in retinal disease state recorded in vivo and its change over time. Graefes Arch Clin Exp Ophthalmol 1999; 237(1): 1–9.

    Article  Google Scholar 

  44. Hee MR, Baumal CR, Puliafito CA et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 1996; 103:1260–1270.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stanga, P.E. et al. (2001). Retinal pigment epithelium translocation and central visual function in age related macular degeneration: preliminary results. In: Sampaolesi, J.R. (eds) Laser Scanning: Update 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0322-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0322-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3866-9

  • Online ISBN: 978-94-010-0322-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics