Skip to main content

Basic principles of laser Doppler flowmetry and application to the ocular circulation

  • Chapter
  • 199 Accesses

Abstract

The study of the hemodynamics in the human eye requires the measurement of blood flow in the various tissues of this organ. Ideally, the measurement technique should be reproducible, accurate, sensitive enough to be able to reveal early pathological alterations, and clinically applicable. Furthermore, its spatial resolution should permit flow measurement in the microcirculation without interference from the larger vessels and its temporal response should be fast enough to allow the investigation of the process of flow regulation evoked by various physiological stimulations.

Supported in part by the Swiss National Fund for Scientific Research No. 32–43157.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benedek GB. Optical mixing spectroscopy with applications to problems in physics, chemistry, biology, and engineering. In the jubilee volume in honor of Alfred Kastler, Polarization, Matter and Radiation, Paris, 1969, Presses Universitaires de France, p. 49.

    Google Scholar 

  2. Bonner RF, Nossal R: Principles of laser-Doppler flowmetry. In: Shepherd AP, Öberg PA (eds) Developments in Cardiovascular Medicine: Laser-Doppler Blood Flowmetry . Vol. 107. Boston: Kluwer Academic Publishers, 1990; 73–92.

    Google Scholar 

  3. Chamot S, Movaffaghy AM, Petrig BL, Rica CE. Blood flow in the human iris measured by laser Doppler flowmetry. Microvasc Res 1999; 57: 153–161.

    Article  PubMed  CAS  Google Scholar 

  4. Chamot S, Movaffaghy M, Petrig BL, Riva CE. Iris blood flow response to acute decreases in ocular perfusion pressure: a laser doppler flowmetry study in humans. Exp Eye Res. In press.

    Google Scholar 

  5. Geijer C, Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci. 1979; 118: 1030–1036.

    Google Scholar 

  6. Geiser MH, Diermann U, Riva CE. Compact laser Doppler choroidal flowmeter. J Biomed Optics 1999; 4: 459–164.

    Article  Google Scholar 

  7. Grunwald JE, Hariprasad SM, DuPont J. Effect of aging on foveolar choroidal circulation. Arch Ophthalmol 1998a; 116: 150–154.

    PubMed  CAS  Google Scholar 

  8. Grunwald JE, Hariprasad SM, DuPont J, et al. Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 1998b; 39: 385–390.

    PubMed  CAS  Google Scholar 

  9. Harris A, Anderson DR, Pillunat L, et al. laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations. J Glaucoma 1996; 5: 258–265.

    PubMed  CAS  Google Scholar 

  10. Koelle J, Riva CE, Petrig BL, Cranstoun SD. Depth of sampling in the optic nerve head using laser Doppler flowmetry. Lasers Med Sci 1993; 8: 49–54.

    Article  Google Scholar 

  11. Lietz, Hendrikson P, Flammer J, Orgül S, Haefliger IO. Effect of carbogen, oxygen and intraocular pressure on Heidelberg retina flowmeter parameter “Flow” measured at the papilla. Ophtalmologica 1998; 212: 149–152.

    Article  CAS  Google Scholar 

  12. Lovasik JV, Kergoat H, Riva CE, Petrig BL. Choroidal blood flow in man after increased systemic perfusion pressure induced by dynamic exercise. Invest Ophthalmol Vis Sci. In press.

    Google Scholar 

  13. Michelson G, Groh M, Grundler A. Regulation of ocular blood flow during increases of arterial blood pressure. Br J Ophthalmol 1994; 78: 461–465.

    Article  PubMed  CAS  Google Scholar 

  14. Michelson G and Schmauss B. Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol 1995; 79: 1126–1132.

    Article  PubMed  CAS  Google Scholar 

  15. Movaffaghy A, Chamot SR, Petrig BL, Riva CE. Blood Flow in the Human Optic Nerve Head during isometric exercise. Exp Eye Res 1998; 67: 561–568.

    Article  PubMed  CAS  Google Scholar 

  16. Petrig BL, Riva CE. Optic nerve head laser Doppler flowmetry: Principles and computer analysis. In Ocular Blood Flow. Glaucoma-Meeting 1995, Kaiser HJ, Flammer J, Hendrickson P (eds) (Karger Basel), 1996, pp. 120–127.

    Google Scholar 

  17. Petrig BL, Riva CE, Lorenz B, Movaffaghy A, Harbarth UP, Dreher AW. Confocal laser Doppler system for measurement of blood velocity in retinal vessels and flow in the optic nerve through the undilated pupil. Lasers and Light 1998; 8: 137–142.

    Google Scholar 

  18. Petrig BL, Riva CE, Hayreh SS. Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol 1999; 127: 43–425.

    Article  Google Scholar 

  19. Petrig BL, Chamot S, Riva CE, Sickenberg M, Ballini JP, Van den Bergh H. Subfoveal blood flow in choroidal neovascular-ization compared to normal fovea as measured by Topss-based laser Doppler flowmeter. Invest Ophthalmol Vis Sci 1999; 40: S561.

    Google Scholar 

  20. Pillunat EL, Anderson DR., Knighton RW, Joos KM, Feuer WJ. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 1997; 64: 737–744.

    Article  PubMed  CAS  Google Scholar 

  21. Quigley HA, Hohmann RM, Addicks EM. Quantitative study of optic nerve head capillaries in experimental disk pallor. A. J Ophthalmol 1982; 93: 689–699.

    CAS  Google Scholar 

  22. Riva CE, Ross B, Benedek GB. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol Vis Sci 1972; 11: 936–944.

    CAS  Google Scholar 

  23. Riva CE, Grunwald JE, Sinclair SH. Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci 1982; 22: 241–248.

    PubMed  CAS  Google Scholar 

  24. Riva CE, Shonat RD, Petrig BL, Pournaras CJ, Barnes GB.Noninvasive measurement of the optic nerve head circulation. Ocular Blood Flow in Glaucoma. Lambrou GN, Greve EL, eds, Kugler and Ghedini Publications, Berkley, 1989a; 129–134. Riva CE., Petrig BL, Grunwald JE. Retinal blood flow. In Laser-Doppler Blood Flowmetry,

    Google Scholar 

  25. Shepherd AP and Öberg PA (eds), Volume 107 of Developments in Cardiovascular Medicine, Kluwer Academic Publishers, Boston, Chapter 19, pp. 349–383, 1989b.

    Google Scholar 

  26. Riva CE, Harino S, Petrig BL, Shonat RD. Laser Doppler flowmetry in the optic nerve. Exp Eye Res 1992; 55: 499–506.

    Article  PubMed  CAS  Google Scholar 

  27. Riva CE, Cranstoun SD, Grunwald JE, Petrig BL. Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci 1994; 35: 4273–4281.

    PubMed  CAS  Google Scholar 

  28. Riva CE, Mendel MJ, Petrig BL. Flicker-induced optic nerve blood flow change. In: Kaiser HJ, Flammer J, Hendrickson P (eds) Ocular Blood Flow. Glaucoma-Meeting 1995. Basel: Karger. 1996: 128–137.

    Google Scholar 

  29. Riva CE, Hero M, Titze P, Petrig BL. Autoregulation of human optic nerve head blood blow in response to acute changes in ocular perfusion pressure. Graefe’s Arch Clin Exp Ophtalmol 1997a; 235: 618–626.

    Article  CAS  Google Scholar 

  30. Riva CE, Titze P, Hero M, Petrig B.L. Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 1997b; 38: 1752–1760.

    PubMed  CAS  Google Scholar 

  31. Riva CE, Titz, P, Hero M, Petrig BL, Movaffaghy A. Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 1997c; 38: 2338–2343.

    PubMed  CAS  Google Scholar 

  32. Sebag J, Feke GT, Delori FC, Weiter JJ. Anterior optic nerve blood flow in experimental atrophy. Invest Ophthalmol Vis Sci 1985; 26: 1415–1422.

    PubMed  CAS  Google Scholar 

  33. Sebag J, Delori, FC, Feke GT, Goger DG, Fitch K, Tagawa H, Deupree D, Weiter JJ, McMeel JW. Anterior optic nerve blood flow decreases in clinical neurogenic Optic atrophy. Opthalmology 1986; 93: 858–865.

    CAS  Google Scholar 

  34. Shepherd AP, Öberg PA, Laser-Doppler Blood Flowmetry. Kluwer Academic Publishers, 1990, Boston.

    Google Scholar 

  35. Skarphedinsson JO, Harding HS, Thore UP. Repeated measurements of cerebral blood flow in rats. Comparison between the hydrogen clearance method and laser Doppler flowmetry. Acta Physiol Scan 1988; 134: 133–142.

    Article  CAS  Google Scholar 

  36. Zinser, G. Scanning laser Doppler flowmetry. Current Concepts on Ocular Blood Flow in Glaucoma. Pillunat LE, Harris A, Anderson DR, Greve EL (eds). Kugler Publications, The Hague, The Netherlands, 1999, pp. 197–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riva, C.E. (2001). Basic principles of laser Doppler flowmetry and application to the ocular circulation. In: Sampaolesi, J.R. (eds) Laser Scanning: Update 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0322-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0322-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3866-9

  • Online ISBN: 978-94-010-0322-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics