Advertisement

Comets: coma and beyond

  • Károly Szegö
Chapter

Abstract

There is no clear definition of what the coma of a comet is. Most frequently it means the faint visible halo around comets, and in other context it denotes material that reflects or emits electromagnetic radiation (including light) back to observers. In this chapter we shall use the word ‘coma’ to describe all materials around the cometary nucleus, solids and volatiles, neutral and charged, irrespective how effectively a certain component is able to scatter or emit radiation. The origin of the coma is the nucleus itself, and we shall discuss the processes that eject or emit materials from the surface to the cometary atmosphere and beyond.We consider only physical processes; coma chemistry is not the topic of this chapter. It is unavoidable to take into account in this context the structure and the physics of the cometary surface layer as well, because this is the source of the coma. Comets are believed to contain pristine materials from the period when the Solar System was born; the cometary surface, however, has been exposed to many perturbations (cosmic rays, solar wind, heat cycles, etc.) and it definitely cannot be considered as pristine. How deep we have to dig to find unprocessed material is an open question. There is only limited experimental evidence on surface evolution obtained in simulations, and we have to rely mostly on guesses.

Keywords

Solar Wind Dust Particle Cometary Nucleus Solar Wind Flow Lower Hybrid Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A’Hearn, M.F., Hoban, S., Birch, P.V., Bowers, C. and Klingesmith, D.A. (1986). Cyanogen jets in comet Halley. Nature, 324, 649–651.ADSCrossRefGoogle Scholar
  2. Altwegg, K., Balsiger, H., Geiss, J., Goldstein, R., Ip, W-H., Meier, A., Neugebauer, M., Rosenbauer, H. and Shelley, E. (1993). The ion population between 1300 km and 230 000 km in the coma of comet P/Halley. Astronomy and Astrophysics, 279, 260–266.ADSGoogle Scholar
  3. Balsiger, H., Altwegg, K., Bühler, F., Geiss, J., Ghielmetti, A.G., Goldstein, B.E., Goldstein, R., Huntress, W.T., Ip, W.-H., Lazarus, A.J., Meier, A., Neugebauer, M., Rettenmund, U., Rosenbauer, H., Schwenn, R., Sharp, R.D., Shelly, E.G., Ungstrup, E. and Young, D. T. (1986). Ion composition and dynamics at comet Halley. Nature, 321, 330–334.ADSCrossRefGoogle Scholar
  4. Balsiger, H., Altwegg, K., Bühler, F., Fuselier, S.A., Geiss, J., Goldstein, B.E., Goldstein, R., Huntress, W.T., Ip, W.H., Lazarus, A.J., Meier, A., Neugebauer, M., Rettenmund, U., Rosenbauer, H., Schwenn, R., Shelley, E.G., Ungstrup, E. and Young, D.T. (1987). The composition and dynamics of cometary ions in the outer coma of comet P/Halley. Astronomy and Astrophysics, 187, 163.ADSGoogle Scholar
  5. Bame, S.J., Anderson, R.C., Asbridge, J.R., Baker, D.N., Feldman, W.C., Fuselier, S.A., Gosling, J.T., McComas, D.J., Thomsen, M.F., Young, D.T. and Zwickl, R.D. (1986). Comet Giacobini-Zinner: plasma description. Science, 232, 356–361.ADSCrossRefGoogle Scholar
  6. Boehnhardt, H. (1989). Clusters and packets of grains in comet Halley and the fragmentation of dust. Earth, Moon, and Planets, 46, 221.ADSCrossRefGoogle Scholar
  7. Caso, C., Conforto, G., Gurtu, A., Aguilar-Benitez, M., Amsler, C., Barnett, R.M., Burchat, P.R., Carone, C.D., Dahl, O., Doser, M., Eidelman, S., Feng, J.L., Goodman, M., Grab, C., Groom, D.E., Hagiwara, K., Hayes, K.G., Hernandez, J.J., Hikasa, K., Honscheid, K., James, F., Mangano, M.L., Manohar, A.V., Mönig, K., Murayama, H., Nakamura, K., Olive, K.A., Piepke, A., Roos, M., Schindler, R.H., Shrock, R.E., Tanabashi, M., Törnqvist, N.A., Trippe, T.G., Vogel, P., Wohl, C.G., Workman, R.L., Yao, W.-M., Armstrong, B., Casas Serradilla, J.L., Filimonov, B.B., Gee, P.S., Lugovsky, S.B., Mankov, S., Nicholson, F., Babu, K.S., Besson, D., Biebel, O., Cahn, R.N., Crawford, R.L., Dalitz, R.H., Damour, T., Desler, K., Donahue, R.J., Edwards, D.A., Erler, J., Ezhela, V.V., Fass, A., Fetscher, W., Froidevaux, D., Gaisser, T.K., Garren, L., Geer, S., Gerber, H.-J., Gilman, F.J., Haber, H.E., Hagmann, C., Hinchliffe, I., Hogan, C.J., Höhler, G., Jackson, J.D., Johnson, K.F., Karlen, D., Kayser, B., Kleinknecht, K., Knowles, I.G., Kolda, C., Kreitz, P., Langacker, P., Landua, R., Littenberg, L., Manley, D.M., March-Russell, J., Nakada, T., Quinn, H., Raffelt, G., Renk, B., Ronan, M.T., Rosenberg, L.J., Schmitt, M., Schramm, D.N., Scott D., Sjöstrand, T., Smoot, G.F., Spanier, S., Srednicki, M., Stanev, T., Suzuki, M., Tkachenko, N.P., Valencia, G., van Bibber, K., Voss, R., Wolfenstein, L. and Youssef, S. (1998). Review of particle physics. The European Physical Journal C, 3, 1–794, see also http://pdg.lbl.gov/CrossRefGoogle Scholar
  8. Clairemidi, J., Moreels, G. and Krasnopolsy, V.A. (1990). Spectro-imagery of P/Halley’s inner coma in the OH and NH ultraviolet bands. Astronomy and Astrophysics, 231, 235–240.ADSGoogle Scholar
  9. Cosmovici, C.B., Schwarz, G., Ip, W-H. and Mack, P. (1988). Gas and dust jets in the inner coma of comet Halley. Nature, 332, 705–709.ADSCrossRefGoogle Scholar
  10. Cravens, T.E. (1991). Plasma processes in the inner coma. In R.L. Newburn, M. Neugebauer and J. Rahe (eds), Comets in the Post-Halley Era, vol. 2, Kluwer, Dordrecht, pp. 1211–1258.Google Scholar
  11. Cravens, T.E. (1997). Comet Hyakutake X ray source: Charge transfer of solar wind heavy ions. Geophysical Research Letters, 24, 105–109.ADSCrossRefGoogle Scholar
  12. Crifo, J.F., Lagerros, J., Rodionov, A.V. and Szegö, K. (2000). Comet Halley nucleus shape and activity I. First attempt at interpreting the in situ observed (1986) near-nucleus coma on the basis of a plausible nucleus shape model and of a three-dimensional coma gasdynamic model. Submitted.Google Scholar
  13. Crifo, J.F. and Rodionov, A.V. (1999a). Modelling the circumnuclear coma of comets: Objectives, methods and recent results. Planetary and Space Science, 47, 797–826.ADSCrossRefGoogle Scholar
  14. Crifo, J.F. and Rodionov, A.V. (1999b). Modelling the surface activity of cometary nuclei. Publications of the Astronomical Society of the Pacific, in press.Google Scholar
  15. Crifo, J.F., Rodionov, A.V. and Bockelee-Morvan, D. (1999). The dependence of the circumnuclear coma structure on the properties of the nucleus III. First modelling of a CO-dominated coma, with application to P/Wirtanen beyond 3 AU from the Sun. Icarus, 138, 85–106.ADSCrossRefGoogle Scholar
  16. Enzian, A., Klinger, J., Schwehm, G. and Weissman, P.R. (1999). Temperature and gas production distribution of the surface of a spherical model comet nucleus in the orbit of 46PAVirtanen, Icarus. 138, 74–78.ADSCrossRefGoogle Scholar
  17. Festou, M.C. (1999). On the existence of distributed sources in comet comae. Space Science Reviews, 90, 53–67.ADSCrossRefGoogle Scholar
  18. Fomenkova, M.N. and Mendis, D.A. (1992). A note on the very small grains (VSGs) observed at Halley’s comet. Astrophysics and Space Science, 189, 327.ADSCrossRefGoogle Scholar
  19. Glassmeier, K-H., Tsurutani, B.T. and Neubauer, F.M. (1997). Adventures in the parameter space, a comparison of low-frequency plasma waves at comets. In T. Hada and H. Matsumoto (eds), Nonlinear Waves on Chaos in Space Plasmas, Terra Science, Tokyo, pp. 77–113.Google Scholar
  20. Gombosi, T.I. (1994). Gaskinetic Theory. Cambridge University Press.CrossRefGoogle Scholar
  21. Greenberg, J.M., Mizutani, H. and Yamamoto, T. (1995). A new derivation of the tensile strength of cometary nuclei: application to comet Shoemaker-Levy 9. Astronomy and Astrophysics, 295, L35.ADSGoogle Scholar
  22. Gringauz, K.I., Gombosi, T.I., Remizov, A.P., Apathy, I., Szemerey, I., Verigin, M.I., Denchikova, L.I., Dyachkov, A.V., Keppler, E., Klimenko, I.N., Richter, A.K., Somogyi, A.J., Szegö, K., Szendro, S., Tatrallyay, M., Varga, A. and Vladimirova, G.A. (1986a). First in situ plasma and neutral gas measurements at comet Halley. Nature, 321, 282–285.ADSCrossRefGoogle Scholar
  23. Gringauz, K.I., Verigin, M.I., Remizov, A.P., Gombosi, T.I. and Tatrallyay, M. (1986b). Detection of a new ’chemical’ boundary at Comet Halley. Geophysical Research Letters, 13, 613–616.ADSCrossRefGoogle Scholar
  24. Harmon, J.K., Ostro, S.J., Benner, L.A.M., Rosema, K.D., Jurgens, R.F., Winkler, R., Yeomans, D.K., Choate, D., Cormier, R., Giorgini, J.D., Mitchell, D.L., Chodas, P.W., Rose, R., Kelley, D., Slade, M.A. and Thomas, M.L. (1997). Radar detection of the nucleus and coma of comet Hyakutake. Science, 278, 1921.ADSCrossRefGoogle Scholar
  25. Horanyi, M. (1996). Charged dust dynamics in the solar system. Annual Review of Astronomy and Astrophysics, 34, 383–418.ADSCrossRefGoogle Scholar
  26. Horanyi, M. Gombosi, T.I., Cravens, T.E., Korosmezey, A., Kecskemety, K., Nagy, A.F. and Szegö, K. (1984). The friable sponge model of a cometary nucleus. Astrophysical Journal, 278, 449–455.ADSCrossRefGoogle Scholar
  27. Israelevich, P.L., Gombosi, T.I., Ershkovich, A.I., DeZeeuw, D.L., Neubauer, F.M. and Powell, K.G. (1999). The induced magnetosphere of comet Halley 4. Comparison of in situ observation and numerical simulation. Journal of Geophysical Research, 104, 28, 309.ADSGoogle Scholar
  28. Johnstone, A. (ed) (1991). Cometary Plasma Processes, Geophysical Monograph Series 61, American Geophysical Union, Washington, DC.Google Scholar
  29. Juhasz, A. and Szegö, K. (1997). Charged dust dynamics above the surface of a comet far from the Sun. Journal of Geophysical Researches, 103, 12015.ADSCrossRefGoogle Scholar
  30. Keller, H.U., Curdt, W., Kramm, J-R. and Thomas, N. (1994). Images of the Nucleus of Comet Halley, vol. 1, ESA SP-1127, ESTEC, Noordwijk.Google Scholar
  31. Klinger, J., Levasseur-Regourd, A-C., Bouziani, N. and Enzian, A. (1996).Towards a model of cometary nuclei for engineering studies for future space missions to comets. Planetary and Space Science, 44,637–653.ADSCrossRefGoogle Scholar
  32. Lämmezahl, P., Krankowsky, D., Hodges, R.R., Stubbemann, U.,Woweries, J., Herrwerth, I., Berthelier, J.J., Illiano, J.M., Eberhardt, P.,Dolder, D., Schulte, W. and Hoffman, J.H. (1987). Expansion velocity and temperatures of gas and ions measured in the coma of comet P/Halley. Astronomy and Astrophysics, 187, 169–173.ADSGoogle Scholar
  33. Lisse, C.M., Dennerl, K., Englhauser, J., Harden, M., Marshall, F.E.,Mumma, M.J., Petre, R., Pye, J.P., Ricketts, M.J., Schmitt, J., Trumper,J. and West, R.G. (1996). Discovery of X-ray and extreme UV emission from Comet C/Hyajutake. Science, 274, 205–209.ADSCrossRefGoogle Scholar
  34. Mazets, E.P. et al. (1986). Comet Halley dust environment from SP-2 detector measurements. Nature, 321, 276.ADSCrossRefGoogle Scholar
  35. Mazets, E.P. et al. (1987). Dust in comet P/Halley from Vega observations.Astronomy and Astrophysics, 187, 699.ADSGoogle Scholar
  36. McDonnell, J.A.M., Evans, G.C., Evans, S.T., Alexander, W.M., Burton,W.M., Firth, J.G., Bussoletti, E., Grard, R.J.L., Hanner, M.S. and Sekanina, Z. (1987). The dust distribution within the inner coma of comet P/Halley: Encounter by Giotto’s impact detectors. Astronomy and Astrophysics, 187, 719–741.ADSGoogle Scholar
  37. McDonnell, J.A.M. and Pankiewitz, G.S. (1990). Comet Halley’s dusty coma: In situ exploration with dust impact detector. In J. Mason (ed),Comet Halley, Investigations, Results, Interpretations, Ellis Horwood,New York, pp. 15–32.Google Scholar
  38. Mendis, D.A. and Brin, G.D. (1977). Monochromatic brightness variations of comets. II -Core-mantle model. Moon, 17, 359–372.ADSCrossRefGoogle Scholar
  39. Mendis, D.A., Hill, J.R., Houpis, H.L.F. and Whipple, E.C. (1981). On the electrostatic charging of the cometary nucleus. Astrophysical Journal,249, 787–797.ADSCrossRefGoogle Scholar
  40. Merenyi, E., Foldy, L., Szegö, K., Toth, I. and Kondor, A. (1990). The landscape of comet Halley. Icarus, 86, 9–20.ADSCrossRefGoogle Scholar
  41. Mohlmann, D. (1999). Activity and nucleus properties of 46 P/Wirtanen.Planetary and Space Science, 47, 971.ADSCrossRefGoogle Scholar
  42. Moore, M.H., Donn, B., Khanna, R. and A’Hearn, M.F. (1983). Studies of proton-irradiated cometary-type ice mixtures. Icarus, 54, 388–405.ADSCrossRefGoogle Scholar
  43. Mukai, T., Miyake, W., Terasawa, T., Kitayama, M. and Hirao, K. (1986).Plasma observation by Suisei of solar-wind interaction with comet Halley. Nature, 321, 299–303.ADSCrossRefGoogle Scholar
  44. Neubauer, F.M. (1991). The magnetic field structure of the cometary plasma environment. In R.L. Newburn, M. Neugebauer and J. Rahe (eds),Comets in the Post-Halley Era, Kluwer, Dordrecht, pp. 1107–1124.Google Scholar
  45. Neubauer, F.M., Glassmeier, K.H., Pohl, M., Raeder, J., Acuna, M.H.,Burlaga, L.F., Ness, N.F., Musmann, G., Mariani, F., Wallis, M.K.,Ungstrup, E. and Schmidt, H.U. (1986). First results from the Giotto magnetometer experiment at Comet Halley. Nature, 321, 352–355.ADSCrossRefGoogle Scholar
  46. Newburn, R.L., Neugebauer, M. and Rahe, J. (eds) (1991). Comets in the Post-Halley Era, Kluwer, Dordrecht.Google Scholar
  47. Oberc, P. (1996). Disintegration of dust aggregates as origin of the boundaries in Halley’s coma: derivation of the sublimation parameters.Icarus, 124, 195.ADSCrossRefGoogle Scholar
  48. Podolak, M. and Prialnik, D. (1996). Models of the structure and evolution of comet P/Wirtanen. Planetary and Space Science, 44, 655–664.ADSCrossRefGoogle Scholar
  49. Probstein, R.F. (1969). The dusty gasdynamics of comet heads. In M.A.Lavrentiev (ed), Problems of Hydrodynamics and Continuum Mechanics,Society for Industrial and Applied Mathematics, Philadelphia,pp. 568–583.Google Scholar
  50. Reme, H., Sauvaud, J.A., D’Uston, C., Cros, A., Anderson, K.A., Carlson,C.W., Curtis, D.W., Lin, R.P., Korth, A., Richter, A.K. and Mendis, D.A.(1987). General features of comet P/Halley: Solar wind interaction from plasma measurements. Astronomy and Astrophysics, 187, 33.ADSGoogle Scholar
  51. Reme, H. (1991). Cometary plasma observations between the shock and contact surface. In A. Johnstone (ed), Cometary Plasma Processes.Geophysical Monograph Series 61, American Geophysical Union, Washington, DC, pp. 87–105.CrossRefGoogle Scholar
  52. Richter, K., Curdt, W. and Keller, H.U. (1991). Velocity of individual large dust particles ejected from comet P/Halley. Astronomy and Astrophysics, 250, 548.ADSGoogle Scholar
  53. Rickman, H. (1991). The thermal history and structure of cometary nuclei. In R.L. Newburn, M. Neugebauer and J. Rahe (eds), Comets in the Post-Halley Era, Vol. 2, Kluwer, Dordrecht, pp. 733–760.Google Scholar
  54. Rodionov, A.V., Crifo, J.F., Szegö, K., Lagerros, J. and Fulle, M. (2002). An advanced model of cometary activity: Description and examples of application to comets Hyakutake and Halley. Planetary and Space Science, submitted.Google Scholar
  55. Sagdeev, R.Z. et al. (1987). The spatial distribution of dust jets seen during the Vega 2 flyby. Astronomy and Astrophysics, 187, 293.ADSGoogle Scholar
  56. Sagdeev, R.Z., Evlanov, E.N., Zubkov, B.V., Prilutskii, O.F. and Fomenkova, M.N. (1990). Detection of very fine particles near the nucleus of comet Halley. Sov. Astron. Lett., 16, 315.ADSGoogle Scholar
  57. Salo, H. (1988). Monte-Carlo modelling of the net effects of coma scattering and thermal reradiation of the energy inputs to cometary nucleus. Icarus, 76, 253–269.ADSCrossRefGoogle Scholar
  58. Shapiro, V.D., Bingham, R., Dawson, J.M., Dobe, Z., Kellet, B.J. and Mendis, D.A., (1999). Energetic electrons produced by lower hybrid waves in the cometary environment and soft X-ray emission: Bremstrahlung and K-shell radiation. Journal of Geophysical Research, 104, 2537–2554.ADSCrossRefGoogle Scholar
  59. Shimizu, M. (1991). The hydrogen clouds of comets. In R.L. Newburn, M. Neugebauer and J. Rahe (eds), Comets in the Post-Halley Era, vol. 2, Kluwer, Dordrecht, pp. 897–905.Google Scholar
  60. Simpson, J.A. et al. (1986). Dust counter and mass analyser (DUCMA) measurements of comet Halley’s coma from Vega spacecraft. Nature, 321, 278.ADSCrossRefGoogle Scholar
  61. Simpson, J.A., Rabinowitz, D., Tuzzolino, A.J., Ksanfomality, L.V. and Sagdeev, R.Z. (1987). The dust coma of comet P/Halley: measurements on the Vega-1 and Vega-2 spacecraft. Astronomy and Astrophysics, 187, 742.ADSGoogle Scholar
  62. Simpson, J.A., Tuzzolino, A.J., Ksanfomality, L.V. and Sagdeev, R.Z. (1989). Ducma measurements of comet Halley dust mass spectra based on post-encounter dust calibrations. In Asteroids, Comets, Meteors III., Proc. of the Uppsala conference, p. 345.Google Scholar
  63. Schmidt, H.U., Wegmann, R., Huebner, W.F. and Boyce, D.C. (1988).Cometary gas and plasma flow with detailed chemistry. Computer Physics Communications, 49, 17–59.ADSCrossRefGoogle Scholar
  64. Strangeway, R.J. and Russell, C.T. (1996). Plasma waves and field aligned currents in the Venus plasma mantle. Journal of Geophysical Research,101, 17313–17324.ADSCrossRefGoogle Scholar
  65. Szegö, K., Sagdeev, R.Z., Whipple, F.L., Abergel, A., Bertaux, J.-L.,Merenyi, E., Szalai, S. and Varhalmi, L. (1995). Images of the Nucleus of Comet Halley, vol. 1, ESA SP-1127, ESTEC, Noordwijk.Google Scholar
  66. Szegö, K., Klimov, S., Kotova, G.A., Livi, S., Rosenbauer, H., Skalsky, A.and Verigin, M.I. (1998). On the dayside region between the shocked solar wind and the ionosphere of Mars. Journal of Geophysical Research, 103, 9101–9111.ADSCrossRefGoogle Scholar
  67. Szegö, K., Glassmeier, K.-H., Bingham, R., Bogdanov, A., Fischer, C.,Haerendel, G., Brinca, A., Cravens, T., Dubinin, E., Sauer, K., Fisk, L.,Gombosi, T., Schwadron, N., Isenberg, P., Lee, M., Mazelle, C.,Möbius, E., Motschmann, U., Shapiro, V.D., Tsurutani, B. and Zank, G.(2000). Physics of mass loaded plasmas. Space Science Reviews, 94,429–671.ADSCrossRefGoogle Scholar
  68. Thiel, K., Kölzer, G., Kochan, H., Lämmerzahl, P. and Lorenz, E. (1995).Phenomenology and dynamic behavior of the dust component in the KOSI experiments. Planetary and Space Science, 43, 375.ADSCrossRefGoogle Scholar
  69. Vaisberg, O.L. et al. (1986). Dust coma structure of comet Halley from SP-1 detector measurements. Nature, 321, 274.ADSCrossRefGoogle Scholar
  70. Vaisberg, O.L., Smirnov, V., Omelchenko, A., Gorn, L. and Iovlev, M.(1987). Spatial and mass distribution of low-mass dust particles (m<10-10g) in comet P/Halley’s coma. Astronomy and Astrophysics,187, 753.ADSGoogle Scholar
  71. Vaisberg, O.L. (1990). The dust coma structure of comet Halley. In J. Mason (ed), Comet Halley: Investigations, Results, Interpretations,Ellis Horwood, New York, pp. 33–44.Google Scholar
  72. Whipple, F.L. (1950). A comet model. I. The acceleration of comet Encke.Astrophysical Journal, 111, 375–394.ADSCrossRefGoogle Scholar
  73. Zank, G.P., Khabibrakhmanov, I.Kh. and Story, T.R. (1993). The structure of mass loading shocks. Journal of Geophysical Research, 98,5645–5649.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Károly Szegö
    • 1
  1. 1.Research Institute for Particle and Nuclear PhysicsBudapestHungary

Personalised recommendations