Skip to main content

Verification of general relativity: tests in the Solar System

  • Chapter
The Century of Space Science

Abstract

In 1900, Isaac Newton’s worldview of gravity, space, and time still prevailed — that the gravitational force was a universal, direct, and instantaneous action-at-a-distance between the masses of the Universe, that bodies and light rays moved through an “absolute space, in its own nature, without anything external” whose geometric structure was rigidly Euclidean without end, and that the dynamics of physical law unfolded with respect to an “absolute, true, and mathematical time (flowing) equably without relation to anything external” (Newton 1687). Through the twentieth century that edifice was overthrown and replaced by Albert Einstein’s general relativity (GR) perspective – that gravity is an interaction transmitted by a causal and dynamic field whose sources are all forms of energy, including its own contributions, and which then acts elsewhere upon the same; and that the metrical relations between the clocks, rulers, and signals throughout the cosmos are dynamic, non-Euclidean, locationally dependent, and established by the fields of gravity. The detailed structure of metric gravitational field components in the Solar System has in all cases been found to match the predictions of GR in a variety of experiments which primarily employed radar and laser ranging between Earth and other planets or spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.D., Gross, M., Nordtvedt, K. and Turyshev, S. (1996). The solar test of the equivalence principle. Astrophysical Journal, 459, 365–370.

    Article  ADS  Google Scholar 

  • Brans, C. and Dicke, R.H. (1961). Mach’s principle and a relativistic theory of gravity. Physical Review, 124, 925–935.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ciufolini, I., Pavlis, E., Chieppa, F., Fernandes-Vieira and Perez-Mercader, J. (1998). Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science, 279, 2100–2103.

    Article  ADS  Google Scholar 

  • Damour, T. and Nordtvedt, K. (1993). General relativity as a cosmological attractor of tensor-scalar theories. Physical Review Letters, 70, 2217–2219.

    Article  ADS  Google Scholar 

  • Damour, T. and Polyakov, A.M. (1994). The string dilaton and a least coupling principle. Nuclear Physics B, 423, 532–558.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • deSitter, W. (1916). On Einstein’s theory of gravitation and its astronomical consequences. Monthly Notices of the Royal Astronomical Society, 11, 155–184.

    ADS  Google Scholar 

  • Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G. and Yoder, C.F. (1994). Lunar laser ranging: A continuing legacy of the Apollo program. Science, 265, 482–490.

    Article  ADS  Google Scholar 

  • Eddington, A.S. (1923). The Mathematical Theory of Relativity, Cambridge University Press.

    MATH  Google Scholar 

  • Einstein, A. (1907). Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411–462.

    ADS  Google Scholar 

  • Einstein, A. (1911). On the influence of gravitation on the propagation of light. InThe Principle of Relativity(translated by W. Perrett and G.B. Jeffery), Dover Publications, New York, pp. 99–108.

    Google Scholar 

  • Einstein, A. (1916). The foundation of the general theory of relativity. In The Principle of Relativity (translated by W. Perrett and G.B. Jeffery), Dover Publications, New York, pp. 111–162.

    Google Scholar 

  • Einstein, A. (1922). The Meaning of Relativity (original translation by Edwin Plimpton Adams), Princeton University Press, 5th edn, p. 103.

    Chapter  Google Scholar 

  • Eubanks, T.M., Matsakis, D.N., Martin, J.O., Archinal, B.A., McCarthy, D.D., Klioner, S.A., Shapiro, S. and Shapiro, I.I. (1997). Advances in Solar System tests of gravity. Abstract K11.05 of paper given at the April 1997 meeting of the American Physical Society.

    Google Scholar 

  • Everitt, C.W.F., Lipa, J.A., Keiser, G.M., Anderson J.T., Turneaure, J.P., Cornell, E.A., Levine, P.D., van Patten, R.A., Breakwell, J.V. and DeBra, D.B. (1988). The Stanford relativity gyro experiment: History and overview. In J.D. Fairank, B.S. Deaver Jr, C.W.F. Everitt and P.F. Michelson (eds), Near Zero: New Frontiers of Physics, Freeman, San Francisco, pp. 587–639.

    Google Scholar 

  • Jordan, P. (1949). Formation of the stars and development of the Universe. Nature, 164, 637–640.

    Article  ADS  MATH  Google Scholar 

  • Lense, J. and Thirring, H. (1918). Über den Einfuss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 19, 156–163.

    ADS  Google Scholar 

  • Mach, E. (1912). The Science of Mechanics: A Critical and Historical Account of Its Development (English translation by Thomas J. McCormack), Open Court, LaSalle, IL, 1960, Chapter II, Section VI.

    Google Scholar 

  • Müller, J. and Nordtvedt, K. (1998). Lunar laser ranging and the equivalence principle signal. Physical Review, 58(6), 2001.

    Google Scholar 

  • Newton, I. (1687). Principia: Vol. 1 The Motion of Bodies (Motte’s translation, revised by F. Cajori), University of California Press, Berkeley, 1934, Definition VIII.

    Google Scholar 

  • Nordtvedt, K. (1968a). Equivalence principle for massive bodies: II. Theory. Physical Review, 169, 1017–1025.

    Article  ADS  Google Scholar 

  • Nordtvedt, K. (1968b). Testing relativity with laser ranging to the Moon. Physical Review, 170, 1186–1187.

    Article  ADS  Google Scholar 

  • Nordtvedt, K. (1970). Tests of the equivalence principle and gravitation theory using Solar System bodies. In Proceedings of the Conference on Experimental Tests of Gravitation Theories, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Nordtvedt, K. (1973). Post-Newtonian gravitational effects in lunar laser ranging. Physical Review D, 7, 2347–2356.

    Article  ADS  Google Scholar 

  • Nordtvedt, K. (1987). Probing gravity to the second post-Newtonian order and to one part in 107 using the spin axis of the Sun. Astrophysical Journal, 320, 871–874.

    Article  ADS  Google Scholar 

  • Nordtvedt, K.L., Müller, J. and Soffel, M. (1995). Cosmic acceleration of the Earth and Moon by dark matter. Astronomy and Astrophysics, 293, L73–L74.

    ADS  Google Scholar 

  • Nordtvedt, K. and Will, C. (1972). Conservation laws and preferred frames in relativistic gravity: II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophysical Journal, 177, 775–792.

    Article  MathSciNet  ADS  Google Scholar 

  • Pais, A. (1982). Subtle is the Lord: The Science and the Life of Albert Einstein, Oxford University Press, New York, Chapter 16.

    Google Scholar 

  • Pound, R.V. and Rebka, G.A. Jr. (1960). Apparent weight of photons. Physical Review Letters, 4, 337–341.

    Article  ADS  Google Scholar 

  • Pound, R.V. and Snider, J.L. (1965). Effect of gravity on gamma radiation. Physical Review, 140, B788–B803.

    Article  ADS  Google Scholar 

  • Reasenberg, R.D., Shapiro, I.I., MacNeil, P.E., Goldstein, R.B., Breidenthal, J.C., Brenkle, J.P., Cain, D.L., Kaufman, T.M., Komarek, T.A. and Zygielbaum, A.I. (1979). Viking relativity experiment: Verification of signal retardation by solar gravity. Astrophysical Journal, 234, L219–L221.

    Article  ADS  Google Scholar 

  • Samain, E., Mangin, J.F., Veillet, C., Torre, J.M., Fridelance, P., Chabaudie, J.E., Feraudy, D., Glentzlin, M., Pham Van, J., Furia, M., Journet, A. and Vigouroux, G. (1998). Millimetric lunar laser ranging at OCA (Observatoire de la Cote d’Azur). Astronomy and Astrophysics, Suppl., 130, 235–244.

    ADS  Google Scholar 

  • Schiff, L.I. (1960). Possible new test of general relativity theory. Physical Review Letters, 4, 215–217.

    Article  ADS  Google Scholar 

  • Schiff, L.I. (1960b). Motion of a gyroscope according to Einstein’s theory of gravity. Proceedings of the National Academy of Sciences, 46, 871–872.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shapiro, I.I. (1964). Fourth test of general relativity. Physical Review Letters, 13, 789–791.

    Article  MathSciNet  ADS  Google Scholar 

  • Shapiro, I.I. (1990). In N. Ashby, D.F. Bartlett and W. Wyss (eds), General Relativity and Gravitation 1989, Cambridge University Press, p. 313.

    Google Scholar 

  • Shapiro, I.I., Ash, M.E., Ingalls, R.P., Smith, W.B., Campbell, D.B., Dyce, R.B., Juergens, R.F. and Pettengill, G.H. (1971). Fourth test of general relativity: New radar result. Physical Review Letters, 26, 1132–1135.

    Article  ADS  Google Scholar 

  • Vessot, R.F.C., Levine, M.W., Mattison, E.M., Blomberg, E.L., Hoffman, T.E., Nystrom, G.U., Farrel, B.F., Decher, R., Edy, P.B., Baugher, C.R., Watts, J.W., Teuber, D.L. and Wills, F.O. (1980). Test of relativistic gravitation with a space-borne hydrogen maser. Physical Review Letters, 45, 1081–1084.

    Article  ADS  Google Scholar 

  • Will, C.M. and Nordtvedt, K. (1972). Conservation laws and preferred frames in relativistic gravity: I. Preferred-frame theories and an extended PPN formalism. Astrophysical Journal, 177, 757–774.

    Article  MathSciNet  ADS  Google Scholar 

  • Williams, J.G., Newhall, X.X. and Dickey, J.O. (1996). Relativity parameters determined from lunar laser ranging. Physical Review D, 53(12), 6730–6739.

    Article  ADS  Google Scholar 

Further Reading

  • Einstein, A. (1955). The Meaning of Relativity, 5th edn, Princeton University Press.

    MATH  Google Scholar 

  • Nordtvedt, K. (1996). From Newton’s Moon to Einstein’s Moon. Physics Today, 49(5), 26–31.

    Article  ADS  Google Scholar 

  • Will, C. (1986). Was Einstein Right?, Basic Books, New York.

    Google Scholar 

  • Will, C. (1993). Theory and Experiment in Gravitational Physics, revised edn, Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nordtvedt, K. (2001). Verification of general relativity: tests in the Solar System. In: Bleeker, J.A.M., Geiss, J., Huber, M.C.E. (eds) The Century of Space Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0320-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0320-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7196-0

  • Online ISBN: 978-94-010-0320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics