Vortex Analysis in the Ginzburg-Landau Model of Superconductivity

  • E. Sandier
  • S. Serfaty
Part of the NATO Science Series book series (ASIC, volume 569)


This paper reports on recent mathematical work [19, 20, 21] which aims at describing minimizers of the Ginzburg-Landau functional in the presence of an applied magnetic field in terms of vortices. For some part these results were already known to be true by physicists and applied mathematicians, but were only recently rigourously proved. Also the mathematical approach has made the knowledge more accurate, and has clarified the validity regime of certain formal calculations.


Radon Measure Normal Solution Obstacle Problem Unique Minimizer Surface Superconductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Abrikosov: 1957, On the Magnetic Properties of Superconductors of the Second Type, Soviet Phys. JETP 5, 1174–1182.Google Scholar
  2. 2.
    A. Aftalion, E. Sandier, S. Serfaty: Pinning phenomena in the Ginzburg-Landau model of superconductivity, To appear in Jour. Math. Pures et Appliquées Google Scholar
  3. 3.
    P. Bauman, D. Phillips, Q. Tang: Stable nucleation for the Ginzburg-Landau system with an applied field, to appear in Arch. Rat. Mech. Anal. Google Scholar
  4. 4.
    F. Bethuel, H. Brezis and F. Helein: 1994, Ginzburg-Landau Vortices, Birkhauser.Google Scholar
  5. 5.
    A. Bonnet and R. Monneau: Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, to appear in Interfaces and Free Boundaries.Google Scholar
  6. 6.
    M.S. Berger, Y.Y. Chen: 1989, Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon. J. Funct. Anal. 82(2), 259–295.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    F. Bethuel and T. Riviere: 1995, Vortices for a Variational Problem Related to Superconductivity, Annales IHP, Analyse non lineaire 12, 243–303.MathSciNetMATHGoogle Scholar
  8. 8.
    M. Comte and P. Mironescu: 1996, The behavior of a Ginzburg-Landau minimizer near its zeroes, Calc. Var. Part. Diff. Eq. 4(4), 323–340.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P.G. DeGennes: 1966, Superconductivity of Metal and Alloys, Benjamin, New York and Amsterdam.Google Scholar
  10. 10.
    Q. Du, M.D. Gunzburger and J.S. Peterson: 1995, Computational simulations of type II superconductivity including pinning phenomena, Ph. Rev. B 51(22), 16194–16203.CrossRefGoogle Scholar
  11. 11.
    M. Dutour: 1999, Bifurcation vers l’tat d’Abrikosov et diagramme de phase, These Orsay, http: //xxx. lanl. gov/abs/math-ph/9912011.Google Scholar
  12. 12.
    V.L. Ginzburg, L.D. Landau: 1965, in Collected papers of L.D.Landau, edited by D. Ter Haar, Pergamon Press, Oxford.Google Scholar
  13. 13.
    T. Giorgi, D. Phillips: 1999, SIAM Jour. Math. Anal. 30(2), 341–359.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    R. Jerrard: 1997, Lower Bounds for Generalized Ginzburg-Landau Functionals, preprint Univ. Illinois.Google Scholar
  15. 15.
    D. Kinderlehrer, G. Stampacchia: 1980, An introduction to variational inequalities and their applications. Pure and Applied Mathematics, Vol. 88, New York, Academic Press.MATHGoogle Scholar
  16. 16.
    J.F. Rodrigues: 1987, Obstacle Problems in Mathematical Physics, Mathematical Studies, North Holland.MATHGoogle Scholar
  17. 17.
    J. Rubinstein: Six Lectures on Superconductivity, Proc. of the CRM School on “Boundaries, Interfaces, and Transitions”.Google Scholar
  18. 18.
    E. Sandier: 1998, Lower Bounds for the Energy of Unit Vector Fields and Applications, J. Functional Analysis 152(2), 379–403.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    E. Sandier and S. Serfaty: Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, to appear in Annales IHP, Analyse non linéaire.Google Scholar
  20. 20.
    E. Sandier and S. Serfaty: On the Energy of Type-II Superconductors in the Mixed Phase, to appear in Reviews in Math. Phys. Google Scholar
  21. 21.
    E. Sandier and S. Serfaty: A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, to appear in Annales Scientifiques de l’ENS.Google Scholar
  22. 22.
    D. Saint-James, G. Sarma and E.J. Thomas: 1969, Type-II Superconductivity, Pergamon Press.Google Scholar
  23. 23.
    S. Serfaty: 1999, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part I, Comra. Contemporary Mathematics 1(2), 213–254.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    S. Serfaty: 1999, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part II, Comm. Contemporary Mathematics 1(3), 295–333.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    S. Serfaty: 1999, Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation, Arch. for Rat. Mech. Anal. 149(4), 329–365.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    M. Tinkham: 1996, Introduction to Superconductivity, 2d edition, McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • E. Sandier
    • 1
  • S. Serfaty
    • 2
  1. 1.Département de MathématiquesUniversité François RabelaisToursFrance
  2. 2.Ecole Normale Supérieure de CachanCMLACachan CedexFrance

Personalised recommendations