Skip to main content

The Influence of Advection on the Propagation of Fronts in Reaction-Diffusion Equations

  • Chapter
Nonlinear PDE’s in Condensed Matter and Reactive Flows

Part of the book series: NATO Science Series ((ASIC,volume 569))

Abstract

Propagation of fronts is a phenomenon which plays a central role in a varied array of different fields. Front solutions in combustion represent propagating flames in particular in the setting of deflagrations in premixed gases (see e.g. [13, 68]). In physics and chemistry, more generally, propagating fronts describe phase transitions as a steady transformation taking place at a well defined velocity. Biological invasions or changes in populations are also often modelled as fronts (see e.g. [26], [53] and [62]). Propagation of fronts and of pulses appears indeed to be a very general phenomenon in excitable media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Aronson, H.F. Weinberger: 1975, Nonlinear diffusion in population genetics, combustion and nerve propagation, Part. Diff. Eq. and related topics, Lectures Notes in Math. 446, Springer, New York, 5–49.

    Chapter  Google Scholar 

  2. D.G. Aronson, H.F. Weinberger: 1978, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30, 33–76.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Audoly, H. Berestycki, Y. Pomeau: 2000, Réaction-diffusion en écoulement stationnaire rapide, C. R. Acad. Sci. Paris II 328, 255–262.

    MATH  Google Scholar 

  4. M. Avellaneda, A.J. Majda: 1990, Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys. 131, 381–429.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Avellaneda, A.J. Majda: 1991, An integral representation and bounds of the effective diffusivity in passive advection by laminar and turbulent flows, Comm. Math. Phys. 138, 339–391.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Avellaneda, A.J. Majda: 1994, Simple examples with features of renormalization for turbulent transport, Phil. Trans. Royal Soc. London 346 A, 205–233.

    MathSciNet  Google Scholar 

  7. H. Berestycki, L. Caffarelli, L. Nirenberg: 1990, Uniform estimates for regularisation of free boundary problems, In Anal. and Part. Diff. Eq., editors C. Sadosky & M. Decker, 567–617.

    Google Scholar 

  8. H. Berestycki, F. Hamel: 2000, Non existence of traveling front solutions for some bistable reaction-diffusion equations. Adv. in Diff. Eq. 5, 723–746.

    MathSciNet  MATH  Google Scholar 

  9. H. Berestycki, F. Hamel: 2002, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55, 949–1032.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems in periodic domains. In preparation.

    Google Scholar 

  11. H. Berestycki, F. Hamel, N. Nadirashvili, The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena. In preparation.

    Google Scholar 

  12. H. Berestycki, F. Hamel, L. Roques: Analysis of the periodic patch model for ecological conservation and biological invasion in heterogeneous environment. In preparation.

    Google Scholar 

  13. H. Berestycki, B. Larrouturou: 1996, La modélisation et les mathématiques de la combustion. In Modélisation de la Combustion, special edition of Images des Mathématiques, CNRS, Paris, 9–26.

    Google Scholar 

  14. H. Berestycki, B. Larrouturou, P.-L. Lions: 1990, Multidimensional traveling-wave solutions of a flame propagation model, Arch. Rat. Mech. Anal. 111, 33–49.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Berestycki, B. Larrouturou, J.-M. Roquejoffre: 1991, Mathematical investigation of the cold boundary difficulty in flame propagation theory. Dynamical issues in combustion theory, IMA Vol. Math. Appl. 35, Springer, New York, 37–61.

    Chapter  Google Scholar 

  16. H. Berestycki, B. Larrouturou, J.-M. Roquejoffre: 1992, Stability of traveling fronts in a curved flame model, Part I, Linear analysis, Arch. Rat. Mech. Anal. 117, 97–117.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Berestycki, L. Nirenberg: 1991, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22, 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Berestycki, L. Nirenberg: 1992, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Anal, non Lin. 9, 497–572.

    MathSciNet  MATH  Google Scholar 

  19. M. Bramson: 1983, Convergence of solutions of the Kolmogorov equation to traveling waves, Memoirs Amer. Math. Soc. 44.

    Google Scholar 

  20. R.G. Casten, C. Holland: 1978, Instability results for reaction-diffusion equations with Neumann boundary conditions, J. Diff. Eq. 27, 266–273.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Clavin, F.A. Williams: 1979, Theory of premixed flame propagation in large-scale turbulence, J. Fluid. Mech. 90, 589–604.

    Article  MATH  Google Scholar 

  22. P. Constantin, A. Kiselev, A. Oberman, L. Ryzhik: 2000, Bulk burning rate in passive-reactive diffusion, Arch. Rat. Mech. Anal. 154, 53–91.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Constantin, A. Kiselev, L. Ryzhik: 2001, Quenching of flames by fluid advection, Comm. Pure Appl. Math., 54, 1320–1342.

    Article  MathSciNet  MATH  Google Scholar 

  24. U. Ebert and W. van Saarloos: 2000, Some fronts are more equal than others, Physica D 146, p. 1.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Fannjiang, G. Papanicolaou: 1994, Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54, 333–408.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.C. Fife: 1979, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics 28, Springer Verlag.

    Google Scholar 

  27. P.C. Fife, J.B. McLeod: 1977, The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal. 65, 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  28. R.A. Fisher: 1937, The advance of advantageous genes, Ann. Eugenics 7, 335–369.

    Google Scholar 

  29. M. Freidlin: 1984, On wavefront propagation in periodic media, in Stochastic analysis and applications, editor M. Pinsky, Advances in Probability and related topics 7, M. Dekker, New-York, 147–166.

    Google Scholar 

  30. M. Freidlin: 1985, Functional integration and partial differential equations, Ann. of Math. Studies, Princeton University Press.

    Google Scholar 

  31. M. Freidlin: 1995, Wave front propagation for KPP equations, Surveys in Appl. Maths 2, Plenum, New York, 1–62.

    Chapter  Google Scholar 

  32. J. Gärtner, M. Freidlin: 1979, On the propagation of concentration waves in periodic and random media, Sov. Math. Dokl. 20, 1282–1286.

    MATH  Google Scholar 

  33. K.P. Hadeler, F. Rothe: 1975, Travelling fronts in nonlinear diffusion equations, J. Math. Biology 2, 251–263.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Hamel: 1999, Formules min-max pour les vitesses d’ondes progressives multidi-mensionnelles, Ann. Fac. Sci. Toulouse 8, 259–280.

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Hamel, N. Nadirashvili: 2001, Travelling waves and entire solutions of the Fisher-KPP equation in N, Arch. Ration. Mech. Anal., 157, 91–163.

    Article  MathSciNet  MATH  Google Scholar 

  36. P.S. Hagan: 1982, Travelling wave and multiple traveling wave solutions of parabolic equations, SIAM J. Math. Anal. 13, 717–738.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Heinze: 1993, Homogenization of flame fronts, Preprint IWR, Heidelberg.

    Google Scholar 

  38. S. Heinze: 2001, Wave solution for reaction-diffusion systems in perforated domains, Z. Anal. Anwendungen 20, 661–670.

    MathSciNet  MATH  Google Scholar 

  39. S. Heinze: 2002, Habilitationsschrift, Heidelberg, 2002.

    Google Scholar 

  40. S. Heinze, G. Papanicolaou, A. Stevens, Variational principles for propagation speeds in inhomogeneous media, SIAM J. Appl. Math., to appear.

    Google Scholar 

  41. W. Hudson, B. Zinner: 1995, Existence of traveling waves for reaction-diffusion equations of Fisher type in periodic media, In: Boundary Problems for Functional Differential Equations, World Scientific, 187–199.

    Google Scholar 

  42. C.K.R.T. Jones: 1983, Spherically symmetric solutions of a reaction-diffusion equation, J. Diff. Eq., 49(1), 142–169.

    Article  MATH  Google Scholar 

  43. C.K.R.T. Jones: 1983, Asymptotic behavior of a reaction-diffudion equation, Rocky Mountain J. Math. 13, 355–364.

    Article  MathSciNet  MATH  Google Scholar 

  44. Ya.I. Kanel’: 1961, Certain problems of burning-theory equations, Sov. Math. Dokl. 2, 48–51.

    MathSciNet  MATH  Google Scholar 

  45. A. Kiselev, L. Ryzhik: 2001, Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H. Poincaré, Analyse Non Lin. 18, 309–358.

    Article  MathSciNet  MATH  Google Scholar 

  46. A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov: 1937, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d’Etat à Moscou (Bjul. Moskowskogo Gos. Univ.) A 1, 1–26. See English translation in: 1998, Dynamics of curved fronts, editor P. Pelcé, Academic Press, 105-130.

    Google Scholar 

  47. K.S. Lau: 1985, On the nonlinear diffusion equation of Kolmogorov, Petrovskii, and Piskunov, J. Diff. Eq. 59(1), 44–70.

    Article  MATH  Google Scholar 

  48. A.J. Majda, R.M. McLaughlin: 1993, The effect of mean flows on enhanced diffu-sivity in transport by incompressible periodic velocity fields, Stud. Appl. Math. 89, 245–279.

    MathSciNet  MATH  Google Scholar 

  49. A.J. Majda, P.E. Souganidis: 1994, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7, 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  50. A.J. Majda, P.E. Souganidis: 1998, Flame fronts in a turbulent combustion model with fractal velocity fields, it Comm. Pure Appl. Math. 51, 1337–1348.

    Article  MathSciNet  MATH  Google Scholar 

  51. J.-F. Mallordy, J.-M. Roquejoffre: 1995, A parabolic equation of the KPP type in higher dimensions, SIAM J. Math. Anal. 26, 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Matano: May 2001, Traveling waves in spatially inhomogeneous diffusive media-the non periodic case, Proc. of the fifth Mississipi State Conf. in Differential Equ. and Computer Sim. See also: Traveling waves in spatially almost periodic media. In preparation.

    Google Scholar 

  53. J.D. Murray: 1989, Mathematical Biology, Springer-Verlag.

    Google Scholar 

  54. K.-I. Nakamura, Effective speed of traveling wavefronts in periodic inhomogeneous media, preprint.

    Google Scholar 

  55. G. Papanicolaou, X. Xin: 1991, Reaction-diffusion fronts in periodically layered media, J. Stat. Phys. 63, 915–931.

    Article  MathSciNet  Google Scholar 

  56. P. Ronney: 1995, Some open issues in premixed turbulent combustion, In: Mathematical modelling in combustion science, Editors J. Buckmaster and T. Takeno, Lect. Notes Phys., Springer-Verlag, Berlin, 3–22.

    Google Scholar 

  57. J.-M. Roquejoffre: 1992, Stability of traveling fronts in a curved flame model, Part II: Non-linear orbital stability, Arch. Rat. Mech. Anal. 117, 119–153.

    Article  MathSciNet  MATH  Google Scholar 

  58. J.-M. Roquejoffre: 1997, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincaré, Anal. Non Lin. 14, 499–552.

    Article  MathSciNet  MATH  Google Scholar 

  59. F. Rothe: 1981, Convergence to pushed fronts, Rocky Mountain J. Math. 11(4), 617–633.

    Article  MathSciNet  MATH  Google Scholar 

  60. V. Roussier, Stability of radially symmetric solutions in reaction-diffusion equations, preprint.

    Google Scholar 

  61. D.H. Sattinger: 1976, Stability of waves of nonlinear parabolic systems, Adv. Math. 22, 312–355.

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Shigesada, K. Kawasaki: 1997, Biological Invasions, Theory and Practice, Oxford Univ. Press, Oxford.

    Google Scholar 

  63. A.N. Stokes: 1977, Nonlinear diffusion waveshapes generated by possibly finite initial disturbances J. Math. Anal. Appl. 61(2), 370–381.

    Article  MathSciNet  MATH  Google Scholar 

  64. K. Uchiyama: 1978, The behavior of solutions of some semilinear diffusion equations for large time, J. Math. Kyoto Univ. 18, 453–508.

    MathSciNet  MATH  Google Scholar 

  65. A.I. Volpert, V.A. Volpert, V.A. Volpert: 1994, Traveling wave solutions of parabolic systems, Translations of Math. Monographs 140, Amer. Math. Society.

    Google Scholar 

  66. H.F. Weinberger: 1982, Long time behavior of a class of biological models, SIAM J. Math. Anal. 13, 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  67. H.F. Weinberger: 2002, On spreading speeds and traveling waves for a class of periodic reaction-diffusion models, Preprint.

    Google Scholar 

  68. F. Williams: 1983, Combustion Theory, Addison-Wesley, Reading MA.

    Google Scholar 

  69. J.X. Xin: 1991, Existence and uniqueness of traveling waves in a reaction-diffusion equation with combustion nonlinearity, Indiana Univ. Math. J. 40, 985–1008.

    Article  MathSciNet  Google Scholar 

  70. J.X. Xin: 1991, Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity, J. Dyn. Diff. Eq. 3, 541–573.

    Article  MATH  Google Scholar 

  71. J.X. Xin: 1992, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Rat. Mech. Anal. 121, 205–233.

    Article  MATH  Google Scholar 

  72. J.X. Xin: 1993, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Stat. Phys. 73, 893–926.

    Article  MATH  Google Scholar 

  73. J.X. Xin: 1994, Existence of multidimensional traveling waves in the transport of reactive solutes through periodic porous media, Arch. Rat. Mech. Anal. 128, 75–103.

    Article  MATH  Google Scholar 

  74. J.X. Xin: 2000, Analysis and modeling of front propagation in heterogeneous media, SIAM Review 42, 161–230.

    Article  MathSciNet  Google Scholar 

  75. V. Yakhot: 1988, Propagation velocity of premixed turbulent flames, Comb. Sci. Tech. 60, 191–214.

    Article  MathSciNet  Google Scholar 

  76. Y.B. Zel’dovich: 1992, Selected works, editor J.P. Ostriker, Princeton University press, Princeton.

    Google Scholar 

  77. Y.B. Zeldovich, G.I. Barenblatt, V.B. Libovich, G.M. Mackviladze: 1985, The mathematical theory of combustion and explosions, Cons. Bureau, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berestycki, H. (2002). The Influence of Advection on the Propagation of Fronts in Reaction-Diffusion Equations. In: Berestycki, H., Pomeau, Y. (eds) Nonlinear PDE’s in Condensed Matter and Reactive Flows. NATO Science Series, vol 569. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0307-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0307-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0973-0

  • Online ISBN: 978-94-010-0307-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics