Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

At the beginning of the 60’s decade Sir John Charnley presented the preliminary results of a new method for bone prosthesis fixation [1, 2, 3] based on the load distribution between the bone and the implant by a filling compound called bone cement which is basically autopolymerizable PMMA. This technique has been accepted worldwide in the fixation of knee and hip prosthesis giving excellent results, but in some cases, revisions and prosthesis replacement are required with the corresponding social and economical costs. The main advantages of bone cemented prosthesis rely on the excellent primary fixation between bone and implant and, consequently, in a faster patient recuperation. It is also a low damaging and facile technique to be applied as the bone cements are easily moulded and well adapted to bone complex cavities. However, the technique presents disadvantages such as long-term prosthesis loosening as a consequence of the absence of secondary fixation of the cement. Moreover, the polymerization reaction of methyl methacrylate, MMA, is highly exothermic, and can provoke cellular necrosis in the surrounding tissues. It has also to be considered the toxicity of the aromatic tertiary amine used in these formulations to activate the initiation of the polymerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charnley, J. (1960) Anchorage of the femoral head prosthesis to the shaft of the femur, J. Bone Joint Surg. 42B, 28–35.

    Google Scholar 

  2. Charnley, J., Follarci, F.M and Hammond B.T. (1968) The long-term reaction of bone to self-curing acrylic cement, J. Bone Joint Surg. 50B, 822–829.

    Google Scholar 

  3. Charnley, J. (1970) Acrylic Cement in Orthopaedic Surgery, E.&S, Livingstone, London.

    Google Scholar 

  4. Lautenschlager, E. P., Stupp, S. I. and Keller, J. C. (1984) Structure and properties of acrylic bone cement in P. Ducheyene and G.W. Hastings (eds.) Functional Behavior of Orthopaedic Biomaterials. Vol II. Applications, CRC Press, Boca Raton, Florida, pp. 87–119.

    Google Scholar 

  5. Elliot, J. F. (1968) Polymer Fractionation, Academic Press, New York.

    Google Scholar 

  6. Brauer, G. M., Davenport, R. M. and Hansen, W. C. (1956) Accelerating effect of amines on polymerization of methyl methacrylate, Mod. Plastics 34, 153–256.

    CAS  Google Scholar 

  7. Pryor, W. A. (1966) Free Radicals, McGraw-Hill, New York.

    Google Scholar 

  8. Odian, G. (1991) Principles of Polymerization, Wiley Interscience, New York.

    Google Scholar 

  9. Meyer, P. R., Lautenschlager, E. P. and Moore, B. K. (1973) On the setting properties of acrylic bone cements, J. Bone Joint Surg. 55A, 149–156.

    Google Scholar 

  10. Schoenfeld, C. M., Conard, G. J.and Lautenschlager, E. P. (1979) Monomer release from methacrylate bone cements during simulated in vivo polymerization, J. Biomed. Mater. Res. 13, 135–147.

    Article  CAS  Google Scholar 

  11. Turner, R. C, Atkisn P. E. Ackley, M. A. and Park, J. B. (1981) Molecular and macroscopic properties of PMMA bone cement: Free radical generation and temperature change versus mixing ratio, J. Biomed. Mater. Res. 15, 425–432.

    Article  CAS  Google Scholar 

  12. Bayne, S. C, Lautenschlager, E. P., Compere, C. L. and Wildes, R. (1975) Degree of polymerization of acrylic bone cement, J. Biomed. Mater. Res. 9, 27–34.

    Article  CAS  Google Scholar 

  13. Huikes, R. (1985) The Bone-Implant Interface, American Academy of Orthopaedic Surgeons.

    Google Scholar 

  14. ASTM Legislation, F451-86, Medical and Surgical Materials and Devices.

    Google Scholar 

  15. Willert, H. G., Frech, H. A. and Bechter A. (1975) Polymer Science and Technology, Vol. 7, Plenum Press, New York.

    Google Scholar 

  16. Brauer, G. M. Termini, D. J. and Dickson, G. (1977) Analysis of the ingredients and determination of the residual components of acrylic bone cements, J. Biomed. Mater. Res. 11, 577–607.

    Article  CAS  Google Scholar 

  17. Trap, B., Wolff, D. and Jensen, J.S. (1992) Acrylic bone cements: Residuals and extractability of methacrylate monomers and aromatic amines, J. Appl. Biomat. 3, 51–57.

    Article  Google Scholar 

  18. Vallo, C. L, Montemartini, P. E. and Cuadrado T.R. (1998) Effect of residual monomer content on some properties of poly(methyl methacrylate)-based bone cement, J. Appl. Polym. Sci. 69, 1367–1383.

    Article  CAS  Google Scholar 

  19. Davy, K. W. M. and Braden, M. (1991) Residual monomer in acrylic polymers, Biomaterials 12, 540–544.

    Article  CAS  Google Scholar 

  20. Noble, P. C. (1983) Selection of acrylic bone cements for use in joint replacement, Biomaterials 4, 94–100.

    Article  CAS  Google Scholar 

  21. Wang, C. T. and Pilliar, R. M. (1989) Fracture toughness of acrylic bone cements J. Mater. Sci. 24, 3725–3738.

    Article  CAS  Google Scholar 

  22. Saha, S. and Pal, S. (1984) Mechanical properties of bone cement: A review, J. Biomed. Mater. Res. 18, 435–462.

    Article  CAS  Google Scholar 

  23. Oysaed, H. (1990) Dynamic mechanical properties of multiphase acrylic systems, J. Biomed. Mater. Res.24, 1037–1048.

    Article  CAS  Google Scholar 

  24. Kusy, R. P. (1978) Characterization of self-curing acrylic bone cements, J. Biomed. Mater. Res. 12, 271–305.

    Article  CAS  Google Scholar 

  25. Lewis, G. (1997) Properties of acrylic bone cements: State of the art review, J. Biomed. Mater. Res. (Appl. Biomater.) 38, 155–182.

    Article  CAS  Google Scholar 

  26. Brown, S. A. and Bargar, W. L. (1984) The influence of temperature and specimen size on the flexural properties of PMMA bone cement, J. Biomed. Mater. Res. 18, 523–536.

    Article  CAS  Google Scholar 

  27. Huiskes, R. (1980) Some fundamental aspects of human replacement. Analysis of stresses and heat conduction in bone-prosthesis structures, Acta Orthop. Scand. Suppl. 185, 1–208.

    CAS  Google Scholar 

  28. Iidgren, L., Bodelind, B. and Moller, J. (1987) Bone cement improved by vacuum mixing and chilling, Acta Orthop. Scand. 58, 27–32.

    Article  Google Scholar 

  29. James, S.P., Jasty, M., Davies, J., Piehler, H. and Harris, W.H. (1992) A fractographic investigation of PMMA cement focusing on the relationship between porosity reduction and increased fatigue life, J. Biomed. Mater. Res. 26, 651–662.

    Article  CAS  Google Scholar 

  30. Linden, U. (1991) Mechanical properties of bone cement. Importance of the mixing technique, Clin. Orthop. 272, 274–278.

    Google Scholar 

  31. Hansen, D. and Jensen, J.S. (1992) Mixing does not improve mechanical properties of all bone cements. Manual and centrifugation-vacuum mixing compared for 10 cements brands, Acta Orthop. Scand. 63, 13–18.

    Article  CAS  Google Scholar 

  32. Looney, M. A. and Park, J. B. (1986) Molecular and mechanical property changes during aging of bone cement in vitro and in vivo, J. Biomed. Mater. Res. 20, 555–563.

    Article  CAS  Google Scholar 

  33. Treharne, R. W. and Brown, N. (1975) Factors influencing the creep behavior of poly(methyl methcrylate) cements, J. Biomed. Mater. Res. Symposium 6, 81–88.

    Article  Google Scholar 

  34. Hailey, J.L., Turner, I.G. and Miles, AW. (1994) An in vitro study of the effect of environment and storage time on the fracture properties of bone cement, Clin. Mater. 16, 211–216.

    Article  CAS  Google Scholar 

  35. Murakami, A., Behiri, J.C. and Bonfield, W. (1988) Rubber-modified bone cement, J. Mater. Sci. 23, 2029–2036.

    Article  CAS  Google Scholar 

  36. Vila, M.M., Behiri, J.C. and Planeil, J.A. (1992) Fatigue crack propagation in acrylic bone cements, in P.J. Doherty et al. (eds), Biomaterials-Tissue Interfaces. Advances in Biomaterials, 10, Elsevier, p. 187.

    Google Scholar 

  37. Kennedy, J.P., Askew, M.J. and Richard, J.C. (1993) Polyisobutylene-toughned poly(methyl methacrylate). 3. PMMA-L-PIB networks as bone cements, J. Biomater. Sci. Polymer Edition 4, 445–449.

    CAS  Google Scholar 

  38. Olmi, R., Moroni, A, Castaldini, A, Cavallini, A and Romagnoli, R. (1983) Hydroxyapatites alloyed with bone cement: Physical and biological characterization, in P. Vicenzini (ed.) Ceramics in Surgery, Elsevier Scientific Publishing, Amsterdam.

    Google Scholar 

  39. Castaldini, A., Cavallini, A, Moroni, A and Olmi, R. (1984) Young’s modulus of hydroxy-apatite mixed bone cement, in P. Ducheyne, G Van der Perre and AE. Aubert (eds) Biomaterials and Biomechanics, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  40. Castaldini, A., Cavallini, A. (1985) Setting properties of bone cement with added synthetic hydroxyapatite, Biomaterials 6 55–60.

    Article  CAS  Google Scholar 

  41. Perek, J. and Pilliar, R.M. (1992) Fracture toughness of composite acrylic bone cements, J. Mater. Sci: Materials in Medicine 3, 333–344.

    Article  Google Scholar 

  42. Montemartini, P., Cuadrado, T. and Frontini, P. (1999) Fracture evaluation of acrylic bone cement modified with hydroxyapatite: Influence of the storage conditions, J. Mater. Sci: Materials in Medicine 10, 309–317.

    Article  CAS  Google Scholar 

  43. Alonso, L.M., Mijares, E.M., Davidenko, N., Arevalo, J.E.P., Gastinel, C.F.J., García-Menocal, J.AD. and Mendel, L.M. (1999) Effect of molecular weight and amount and type of hydroxyapatite in acrylic bone cement formulations, Adv. Sci. Technol. (Materials in Clinical Applications) 28, 267–273

    CAS  Google Scholar 

  44. Rudigier, J., Kirschner, P., Richter, I.E. and Schweikert, C.H. (1980) Influence of different x-ray contrast materials on structure and strength of bone cements, in G.W. Hastings and D.F. Williams (eds) Mechanical Properties of Biomaterials, Wiley&Sons, p. 289

    Google Scholar 

  45. Beaumont, P.W.R. (1977) The strength of acrylic bone cements and acrylic cement-stainless steel interfaces. Part 1. The strength of acrylic bone cement containing second phase dispersions, J. Mater. Sci.12, 1845–1852.

    Article  CAS  Google Scholar 

  46. Vázquez, B., Deb, S. and Bonfield, W. (1997) Optimisation of benzoyl peroxide concentration in an experimental bone cement based on poly(methyl methacrylate), J. Mater. Sci. Mater. Med. 8, 455–460.

    Article  Google Scholar 

  47. Owen, A.B. and Beaumont, P.W.R. (1980) Fracture characteristics of surgical acrylic bone cements, in G.W. Hastings and D.F. William (eds), Mechanical properties of biomaterials, John Wiley, New York, pp. 270–287.

    Google Scholar 

  48. Vila, M.M. (1992) Ph.D Thesis, Universidad Politécnica de Cataluña.

    Google Scholar 

  49. Jayakrishnan, A and Chithambara Thanoo B. (1992) Synthesis and polymerization of some iodinecontaining monomers for biomedicai applications, J. Appl. Polym. Sci. 44, 743–748.

    Article  CAS  Google Scholar 

  50. Kruft, M.A.B., Benzina, A, Bar, F., van der Veen, F.H., Bastiaansen, C.W.M., Blezer, R., Findhout, T. and Koole, L.H. (1994) Studies on two new radiopaque polymeric biomaterials, J. Biomed. Mater. Res. 28, 1259–1266.

    Article  CAS  Google Scholar 

  51. Davy, K.W.M., Anseau, M.R., Odlyha, M. and Foster, CM. (1997) X-ray opaque methacrylate polymers for biomedicai applications, Polym. Int. 43, 143–154.

    Article  CAS  Google Scholar 

  52. Koole, L.H., Kruft, M.AB., Colnot, J.M., Kuijer, R. and Bulstra, S.K. (1999) Studies on a new, allpolymeric radiopaque orthopaedic bone cement, Society for Biomaterials, 25th Annual Meeting Transactions, p. 316.

    Google Scholar 

  53. Kuijer, R., Bulstra, S.K., Kruft, M.AB., Vermeiden, A. and Koole, L.H. (1999) Biocompatibility of iodine-containing acrylic bone cement in vitro and in vivo, Society for Biomaterials, 25th Annual Meeting Transactions, p. 95.

    Google Scholar 

  54. Vazquez, B., Ginebra, M.P., Gil, F.J., Planell, J.A, Lopez-Bravo, A and San Román, J. (1999) Radiopaque acrylic cements prepared with a new acrylic derivative of yodo-quinoline, Biomaterials 20, 2047–2053.

    Article  CAS  Google Scholar 

  55. Ginebra, M.P., Aparicio, C, Albuixech, E., Fernandez-Barragan, E., Gil, F.J., Planell, J.A., Morejon, L., Vázquez, B. and San Román, J. (1999) Improvement of the mechanical properties of acrylic bone cements by substitution of the radio-opaque agent, J. Mater. Sci Mater. Med. 10, 733–737.

    Article  CAS  Google Scholar 

  56. Artola A, Gurruchaga M, Goñi I, Studies on a new radiopaque methacrylic bone cement, 15th European Conference on Biomaterials, 1999.

    Google Scholar 

  57. Artola, A,, Gurruchaga, M., Ginebra, P., Gil, X. and Planell, J.A. (2000) Studies on two new radiopaque methacrylic bone cements, Sixth World Biomaterials Congress.

    Google Scholar 

  58. Artola, A., Goni, I., Vázquez, B., San Román, J. and Gurruchaga, M.D. (2000) Radiopacity and antiinflammatory activity in a new acrylic bone cement, I Iberian Congress on Biomaterials and Biosensors. BioAvila 2000.

    Google Scholar 

  59. Artola, A., Gurruchaga, M., Gil, J., Ginebra, P., Manero, J.M. and Goñi, I. (2001) Obtención de cementos óseos a partir de matrices poliméricas radiopacas, VII Reunión del GEP.

    Google Scholar 

  60. Rawls, H.R., Granier, R.J., Smid, J. and Cabasso, I (1996) Thermomechanical investigation of poly(methylmethacrylate) containing an organobismuth radiopacifying additive, J. Biomed. Mater. Res. 31, 339–343.

    Article  CAS  Google Scholar 

  61. Deb, S., Abdulghani, S. and Behiri, J.C. (2001) Radiopacity in bone cements using an organo-bismuth compound, European Society for Biomaterials, 2001 Conference.

    Google Scholar 

  62. Abboud, M., Casaubieilh, L, Morvan, F., Fontanille, M. and Duguet, E. (2000) PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements, J. Biomed. Mater. Res. (Appl. Biomater) 53, 728–736.

    Article  CAS  Google Scholar 

  63. Henning, W., Blencke, B.A., Bromer, H., Deutscher, K.K., Gross, A. and Ege, W. (1979) Investigations with bioactivated polymethylmethacrylates, J. Biomed. Mater. Res. 13, 89–99.

    Article  Google Scholar 

  64. Heikkila, J.T., Aho, A.J., Kangasniemi, I. and Yli-Urpo, A. (1996) Polymethyl methacrylate composites disturbed bone formation at the surface of bioactive glass and hydroxyapatite, Biomaterials 17, 1755–1760.

    Article  CAS  Google Scholar 

  65. Shinzato, S., Koyashi, M., Mousa, W.F., Kamimura, M., Neo, M., Kitamura, Y., Kokubo, T. and Nakamura, T. (2000) Bioactive polymethyl methacrylate-based bone cement: Comparison of glass beads, apatite-and wollastonite-containing glass-ceramic and hydroxyapatite fillers on mechanical and biological properties, J. Biomed. Mater. Res. 51, 258–272.

    Article  CAS  Google Scholar 

  66. Clement, J., Bjelkemyr, A., Martínez, S., Fernández, E., Ginebra, M.P. and Planell, J.A. (1999) Analysis of the kinetics of dissolution and the evolution of the mechanical properties of a phosphate glass stored in simulated body fluid, Bioceramics 12, 375–378.

    CAS  Google Scholar 

  67. Taningher, M., Pasqini, R. and Bonatti, S. (1993) Genotoxicity analysis of N,N-dimethyl-p-toluidine, Environ. Mol. Mutagen. 21, 349–356.

    Article  CAS  Google Scholar 

  68. Bigatti, M.P., Lamberti, L., Rizzi, F.P., Cannas, M. and AUasia, G. (1994) In vitro micronucleus induction by polymethyl methacrylate bone cement in cultured human lymphocytes, Mutat. Res. 321, 133–137.

    Article  CAS  Google Scholar 

  69. Stea, S., Granchi, D., Zolezzi, C, Ciapetti, G., Visentin, M., Cavedagna, D. and Pizzoferrato, A. (1997) High-performance liquid chromatography assay of N,N-dimethyl-p-toluidine released from bone cements evidence for toxicity, Biomaterials 18, 243–246.

    Article  CAS  Google Scholar 

  70. Dulik, D.M. (1979) Evaluation of commercial and newly-synthesized amine accelerators for dental composites, J. Dent. Res. 58, 1308–1316.

    Article  CAS  Google Scholar 

  71. Brauer, G.M., Steinberger, D.R. and Stansbury, J.W. (1986) Dependence of curing time, peak temperature and mechanical properties on the composition of bone cement, J. Biomed. Mater. Res. 20, 839–852.

    Article  CAS  Google Scholar 

  72. Fritsch, E.W. (1996) Static and fatigue properties of two new low-viscosity PMMA bone cements improved by vacuum mixing, J. Biomed. Mater. Res. 31, 451–456.

    Article  CAS  Google Scholar 

  73. Dnebosky, J., Hynkova, V. and Hrabak, F. (1984) Polymerizable amines as promoters of cold curing resins and composites, J. Dent. Res. 54, 773–776.

    Google Scholar 

  74. Tanzi, M.C., Sket, I., Gatti, A.M. and Monari, E. (1991) Physical characterization of acrylic bone cement cured with new accelerator systems, Clinical Materials 8, 131–136.

    Article  CAS  Google Scholar 

  75. Trap, B., Wolff, P. and Jensen, J.S. (1992) Acrylic bone cements: Residuals and extractability of methacrylate monomers and aromatic amines, J. Appl. Biomater. 3, 51–57.

    Article  Google Scholar 

  76. Vázquez, B., Elvira, C, Levenfeld, B., Pascual, B., Goni, L, Gurruchaga, M., Ginebra, M.P., Gil, F.X., Planell, J.A., liso, P.A., Rebuelta, M. and San Román, J. (1997) Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements, J. Biomed. Mater. Res. 34, 129–136.

    Article  Google Scholar 

  77. Liso, P.A., Vázquez, B., Rebuelta, M., Hernáez, M.L., Rotger, R. and San Román, J. (1997) Analysis of the leaching and toxicity of new amine activators for the curing of acrylic bone cements and composites, Biomaterials 18, 15–20.

    Article  CAS  Google Scholar 

  78. Vázquez, B., San Román, J., Deb, S. and Bonfield, W. (1998) Application of long chain amine activators in conventional acrylic bone cement, J. Biomed. Mater. Res. (Appl. Biomater.) 43, 131–139.

    Article  Google Scholar 

  79. Vázquez, B., Deb, S., Bonfield, W. and San Román J. (in press) Characterization of new acrylic bone cements prepared with oleic acid derivatives, J. Biomed. Mater. Res. (Appl. Biomater.).

    Google Scholar 

  80. Deb, S., Di Silvio, L., Vázquez, B. and San Román, J. (1999) Water absorption characteristics and cytotoxic and biological evaluation of bone cements formulated with a novel activator, J. Biomed. Mater. Res. (Appl. Biomater.) 48, 719–725.

    Article  CAS  Google Scholar 

  81. Deb, S., Vázquez, B. and Bonfield, W. (1997) Effect of crosslinking agents on acrylic bone cements based on poly(methyl methacrylate), J. Biomed. Mater. Res. 37, 465–473.

    Article  CAS  Google Scholar 

  82. Pascual, B., Gurruchaga, M., Ginebra, M.P., Gil, F.J., Planell, J.A., Vázquez, B., San Román, J. and Goñi, I. (1999) Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate, Biomaterials 20, 453–463.

    Article  CAS  Google Scholar 

  83. Elvira, C, Vázquez, B., San Román, J., Levenfeld, B., Ginebra, M.P., Gil, X. and Planell, J.A. (1998) Acrylic bone cements incorporating polymeric active components derived from salicylic acid: curing parameters and properties, J. Mater. Sci. Mater. Med. 9, 679–685.

    Article  CAS  Google Scholar 

  84. Islas-Blancas, M.E., Vargas-Coronado, R. and Cauich-Rodriguez, J.V. (2001) Mechanical characterization of bone cements prepared with HA or α-TCP and functionalized methacrylates, European Society for Biomaterials, 2001 Conference.

    Google Scholar 

  85. Mendez, J.A., Aguilar, M.R., Abraham, G.A., Vázquez, B., Dalby, M., Di Silvio, L. and San Román, J. (submitted) New acrylic bone cements conjugated to vitamin E: Curing parameters, properties and biocompatibility, J. Biomed. Mater. Res.

    Google Scholar 

  86. Iitsky, A.S., Rose, R.M., Rubin, C.T. and Thrasher, E.L. (1990) A reduced modulus acrylic bone cement: preliminary results, J. Orthop. Res. 8, 623–626.

    Article  Google Scholar 

  87. Abraham, G.A., Gallardo, A., Motta, A., Migliaresi, C. and San Román, J. (2000) Microheterogeneous polymer systems prepared by suspension polymerization of methyl methacrylate in the presence of poly(e-caprolactone), Macromol. Mater. Eng. 282, 44–50.

    Article  CAS  Google Scholar 

  88. Méndez, J.A, Abraham, G.A., Fernández, M.M., Vázquez, B. and San Román, J. (in press) Self-curing formulations containing PMMA/PCL composites: Properties and antibiotic release behaviour, J. Biomed. Mater. Res.

    Google Scholar 

  89. Braden, M. (1988) Composites for use in making bone cements, US Patent, 4, 791, 150.

    Google Scholar 

  90. Weightman, B., Freeman, M.A.R., Revell, P.A., Braden, M., Albrektsson, B.E.J. and Carlson, L.V. (1987) The mechanical properties of cement and loosening of the femoral component of hip replacements, J. Bone&Joint Surg. 69B, 558–564.

    Google Scholar 

  91. Revell, P.A., Braden, M. and Freeman, M.A.R. (1998) Review of the biological response to a novel bone cement containing poly(ethyl methacrylate) and n-butyl methacrylate, Biomaterials 19, 1579–1586.

    Article  CAS  Google Scholar 

  92. Espigares, I., Elvira, C, Mano, J.F., Vázquez, B., San Román, J. and Reis, R.L. (in press) New partially degradable and bioactive acrylic bone cements on starch blends and ceramic fillers, Biomaterials.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vázquez, B., Abraham, G.A., Elvira, C., Gallardo, A., San Román, J. (2002). Key-Properties and Recent Advances in Bone Cements Technology. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics