Membranes and Hydrogels in Reconstructive Surgery

  • D. Bakoš
  • J. Koller
Chapter
Part of the NATO Science Series book series (NAII, volume 86)

Abstract

The clinical requirement for artificial graft materials to promote effective wound repair is large. Examples of chronic or extensive wounds include burn injuries, post traumatic skin and soft tissue defects, pressure sores (decubitus ulcers), diabetic skin ulcers, venous stasis ulcers, and defects arising following tumor excision. Especially, progress in burn care is dependent much on a suitable sophisticated skin substitute. The successful development of a permanent skin substitute will have a very strong impact on care of patients with serious burns.

Keywords

Cellulose Hydration Polysaccharide Carboxyl Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nerem, R.M., Sabamis, A. (1995) Tissue engineering: From biology to biological substitutes, Tissue Engineering 1, 3–13.CrossRefGoogle Scholar
  2. 2.
    Boyce S.T. (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27, 523–533CrossRefGoogle Scholar
  3. 3.
    Boyce, S.T. (1996) Cultured skin substitutes: A review, Tissue Engineering 2, 225–266.CrossRefGoogle Scholar
  4. 4.
    Tompkins, G.G., Burke, J.F. (1996) Alternative wound coverings, in Herndon, D.N.(ed.), Total Burn Care, W.B. Saunders, Philadelphia, pp. 164–172.Google Scholar
  5. 5.
    Robson, M.C., Bamett, R.A., Leitch, I.O.W., and Hayward, P.G. (1992) Prevention and treatment of postburn scars and contracture, World J. Surg. 16, 87–96.CrossRefGoogle Scholar
  6. 6.
    Tompkins, G.G., Burke, J.F. (1992) Burn wound closure using permanent skin replacement materials. (Review), World Journal of Surgery 16, 47–52.CrossRefGoogle Scholar
  7. 7.
    Nimni, M.E., Cheung, D., Strates, B., Kodama, M., and Shikh, K. (1987) Chemically modified collagen: A natural biomaterial for tissue replacement, J. Biomed. Mater. Res. 21, 741–771.CrossRefGoogle Scholar
  8. 8.
    Hansbrough, J.F., Cooper, ML, Cohen, R., Spielvogel, R.L., Greenleaf, G., et al. (1992) Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice, Surgery 111, 438–446.Google Scholar
  9. 9.
    No author listed (1995) Proceedings of a conference on the indications for use of biobrane in wound management, Houston, Texas, September 17, 1994., J Burn Care Rehabil. 16, 317–42.Google Scholar
  10. 10.
    Williams, D.F. (1992) Biofunctionality and biocompatibility, in D.F. Williams (ed.), Medical and Dental Materials, VCH, Weinheim, pp. 2–27Google Scholar
  11. 11.
    Silver, F., Doillon, Ch. (1989) Biocompatibility-Interactions of biological and implantable materials, Vol.1: Polymers, VCH Publishers,New York, pp.199–2Google Scholar
  12. 12.
    Miller, M.S. (1999) Use of topical recombinant human platelet-derived growth factor-BB (becaplermin) in healing of chronic mixed arteriovenous lower extremity diabetic ulcers, J Foot Ankle Surg. 38, 227–31.CrossRefGoogle Scholar
  13. 13.
    Grant, D.S., Rose, R.W., Kinsella, J.K., and Kibbey, M.C. (1995) Angiogenesis as a component of epithelial-mesenchymal interactions (review), EXS 74, 235–248Google Scholar
  14. 14.
    Boyce, S.T., Medrano, E.E., Abdel-Malek, Z.A., Supp, A.P., Dodick, J.M., et al. (1993) Pigmentation and inhibition of wound contraction by cultured skin substitutes with adult melanocytes after transplantation to athymic mice, J. Invest. Dermatol. 100, 360–365CrossRefGoogle Scholar
  15. 15.
    Rouabhia, M., Germain, L, Bergeron, J., and Auger, F.A. (1995) Allogeneic-syngeneic cultured epithelia. A successful therapeutic option for skin regeneration, Transplantation 59, 1229–35.Google Scholar
  16. 16.
    Solter, D., Gearhart, J. (1999) Putting stem cells to work, Science 283, 1468–1470.CrossRefGoogle Scholar
  17. 17.
    Tompkins, R.G., and Burke, J.F. (1996) Alternative wound coverings, in D.N. Herndon (ed.), Total Burn Care, W.B. Saunders, Philadelphia, PA, pp. 164–172.Google Scholar
  18. 18.
    Greenhalgh, D.G. (1996) The role of growth factors in wound healing, J. Trauma 41, 159–167.CrossRefGoogle Scholar
  19. 19.
    Aloe, L, Tirassa P., and Bracci-Laudiero, L (2001) NGF in neurological and non-neurological diseases: Basic findings and emerging pharmacological prospective, Current Pharmaceutical Desing 7, 113–123.CrossRefGoogle Scholar
  20. 20.
    Eming, S.A, Snow, R.G., Yarmush, M.L., Morgan, J.R. (1996) Targeted expression of insulinelike growth factor to human keratinocytes: Modification of the autocrine control of keratinocyte proliferation, J. Invest, Dermatol. 107, 113–120CrossRefGoogle Scholar
  21. 21.
    Rheinwald, J.G., Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell 6, 331–344.CrossRefGoogle Scholar
  22. 22.
    Carsin, H., Ainaud, P., Le Bever, H., Rives, J., Lakhel, A, Stephanazzi, J., Lambert, F., and Perrot, J. (2000) Cultured epithelial autografie in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients, Burns 26, 379–87.CrossRefGoogle Scholar
  23. 23.
    Cuono, C.B., Langdon, R., Birchall, N., Barttelbort, S., and McGuire, J. (1987) Composite autologous-allogeneic skin replacement: Development and clinical aplication, Plast. Recensir. Surg. 80, 626–637.CrossRefGoogle Scholar
  24. 24.
    Andreassi L, Pianigiani E, Andreassi A, Taddeucci P, Biagioli M. (1998) A new model ofepidermal culture for the surgical treatment of vitíligo, Int J Dermatol. 37, 595–598.CrossRefGoogle Scholar
  25. 25.
    Burke, J.F., Yannas, I.V., Quinby, W.C.Jr., Bondoc, C.C., and Jung, W.K.(1981) Successful Use of a Physiologically Acceptable Artificial Skin in the Treatment of Extensive Burn Injury, Ann. Surg. 194, 413–428.CrossRefGoogle Scholar
  26. 26.
    Yannas, I.V., Burke, J.F., Orgill, D.P., and Skrabut, E.M. (1982) Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin, Science 215, 174–176.CrossRefGoogle Scholar
  27. 27.
    Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GT. Comparative Assessment of Cultured Skin Substitutes and Native Skin Autografi for Treatment of Full-Thickness Burns. Ann Surg 1995;222:743–52.Google Scholar
  28. 28.
    Wainwright, D., Madden, M., Luterman, A, et al. (1996) Clinical evaluation of an cellular allograft dermal matrix in fuU-thickeness burns, J. Burn Care Rehabil. 17, 124–136.CrossRefGoogle Scholar
  29. 29.
    Bell, E., Erlich, H.P., Buttle, D., and Nakatsuji, T. (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness, Science 211, 1052–1054.CrossRefGoogle Scholar
  30. 30.
    Falanga, V.J. (2000) Tissue engineering in wound repair, Adv Skin Wound Care 13, 15–9Google Scholar
  31. 31.
    Stoppie, P., Borghgraef, P., De Wever, B., Geysen, J., and Borgers, M. (1993) The epidermal architecture of an in vitro reconstructed human skin equivalent, EurJ Morphol. 31, 26–29.Google Scholar
  32. 32.
    Reháková, M., Bakoš, D., Vizárová, K., Soldán, M., and Juríčková, M. (1996) The study of properties of collagen and hyaluronic acid composite materials. The modification by chemical crosslinking, J. Biomed. Mat. Res. 30, 369–372.CrossRefGoogle Scholar
  33. 33.
    Koller, J., Bakoš, D. and Sadloňová, I. (2000) Biocompatibility studies of a new biosynthetic dermal substitute based on collagen/hyaluronan conjugate, J. Cell. Tissue Baking 1, 75–80CrossRefGoogle Scholar
  34. 34.
    Koller J., Bakoš D., Sadloňová I.(2001) Biocompatibility studies of modified collagen/hyaluronan membranes after explantation. J. Cell. Tissue Baking, in press.Google Scholar
  35. 35.
    ISO 10993—6 (1994) Tests for local effects after implantation, Biological evaluation of medical devices—Part 6. Google Scholar
  36. 36.
    Vizárová, K, Bakoš, D., Reháková, M., Petríková, M., Panáková, E., and Koller, J. (1995) The Modification of Layered Atelocollagen: Enzymatic Degradation and cytotoxicity Evaluation, Biomaterials 16, 1217–1221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • D. Bakoš
    • 1
  • J. Koller
    • 2
  1. 1.Faculty of Chemical and Food TechnologySTUSlovak Republic
  2. 2.Centre for Burns and Reconstructive SurgeryCentral Tissue Bank, Ružinov General HospitalSlovak Republic

Personalised recommendations