Skip to main content

Membranes and Hydrogels in Reconstructive Surgery

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

The clinical requirement for artificial graft materials to promote effective wound repair is large. Examples of chronic or extensive wounds include burn injuries, post traumatic skin and soft tissue defects, pressure sores (decubitus ulcers), diabetic skin ulcers, venous stasis ulcers, and defects arising following tumor excision. Especially, progress in burn care is dependent much on a suitable sophisticated skin substitute. The successful development of a permanent skin substitute will have a very strong impact on care of patients with serious burns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nerem, R.M., Sabamis, A. (1995) Tissue engineering: From biology to biological substitutes, Tissue Engineering 1, 3–13.

    Article  CAS  Google Scholar 

  2. Boyce S.T. (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27, 523–533

    Article  CAS  Google Scholar 

  3. Boyce, S.T. (1996) Cultured skin substitutes: A review, Tissue Engineering 2, 225–266.

    Article  Google Scholar 

  4. Tompkins, G.G., Burke, J.F. (1996) Alternative wound coverings, in Herndon, D.N.(ed.), Total Burn Care, W.B. Saunders, Philadelphia, pp. 164–172.

    Google Scholar 

  5. Robson, M.C., Bamett, R.A., Leitch, I.O.W., and Hayward, P.G. (1992) Prevention and treatment of postburn scars and contracture, World J. Surg. 16, 87–96.

    Article  CAS  Google Scholar 

  6. Tompkins, G.G., Burke, J.F. (1992) Burn wound closure using permanent skin replacement materials. (Review), World Journal of Surgery 16, 47–52.

    Article  CAS  Google Scholar 

  7. Nimni, M.E., Cheung, D., Strates, B., Kodama, M., and Shikh, K. (1987) Chemically modified collagen: A natural biomaterial for tissue replacement, J. Biomed. Mater. Res. 21, 741–771.

    Article  CAS  Google Scholar 

  8. Hansbrough, J.F., Cooper, ML, Cohen, R., Spielvogel, R.L., Greenleaf, G., et al. (1992) Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice, Surgery 111, 438–446.

    CAS  Google Scholar 

  9. No author listed (1995) Proceedings of a conference on the indications for use of biobrane in wound management, Houston, Texas, September 17, 1994., J Burn Care Rehabil. 16, 317–42.

    Google Scholar 

  10. Williams, D.F. (1992) Biofunctionality and biocompatibility, in D.F. Williams (ed.), Medical and Dental Materials, VCH, Weinheim, pp. 2–27

    Google Scholar 

  11. Silver, F., Doillon, Ch. (1989) Biocompatibility-Interactions of biological and implantable materials, Vol.1: Polymers, VCH Publishers,New York, pp.199–2

    Google Scholar 

  12. Miller, M.S. (1999) Use of topical recombinant human platelet-derived growth factor-BB (becaplermin) in healing of chronic mixed arteriovenous lower extremity diabetic ulcers, J Foot Ankle Surg. 38, 227–31.

    Article  CAS  Google Scholar 

  13. Grant, D.S., Rose, R.W., Kinsella, J.K., and Kibbey, M.C. (1995) Angiogenesis as a component of epithelial-mesenchymal interactions (review), EXS 74, 235–248

    CAS  Google Scholar 

  14. Boyce, S.T., Medrano, E.E., Abdel-Malek, Z.A., Supp, A.P., Dodick, J.M., et al. (1993) Pigmentation and inhibition of wound contraction by cultured skin substitutes with adult melanocytes after transplantation to athymic mice, J. Invest. Dermatol. 100, 360–365

    Article  CAS  Google Scholar 

  15. Rouabhia, M., Germain, L, Bergeron, J., and Auger, F.A. (1995) Allogeneic-syngeneic cultured epithelia. A successful therapeutic option for skin regeneration, Transplantation 59, 1229–35.

    CAS  Google Scholar 

  16. Solter, D., Gearhart, J. (1999) Putting stem cells to work, Science 283, 1468–1470.

    Article  CAS  Google Scholar 

  17. Tompkins, R.G., and Burke, J.F. (1996) Alternative wound coverings, in D.N. Herndon (ed.), Total Burn Care, W.B. Saunders, Philadelphia, PA, pp. 164–172.

    Google Scholar 

  18. Greenhalgh, D.G. (1996) The role of growth factors in wound healing, J. Trauma 41, 159–167.

    Article  CAS  Google Scholar 

  19. Aloe, L, Tirassa P., and Bracci-Laudiero, L (2001) NGF in neurological and non-neurological diseases: Basic findings and emerging pharmacological prospective, Current Pharmaceutical Desing 7, 113–123.

    Article  CAS  Google Scholar 

  20. Eming, S.A, Snow, R.G., Yarmush, M.L., Morgan, J.R. (1996) Targeted expression of insulinelike growth factor to human keratinocytes: Modification of the autocrine control of keratinocyte proliferation, J. Invest, Dermatol. 107, 113–120

    Article  CAS  Google Scholar 

  21. Rheinwald, J.G., Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell 6, 331–344.

    Article  CAS  Google Scholar 

  22. Carsin, H., Ainaud, P., Le Bever, H., Rives, J., Lakhel, A, Stephanazzi, J., Lambert, F., and Perrot, J. (2000) Cultured epithelial autografie in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients, Burns 26, 379–87.

    Article  CAS  Google Scholar 

  23. Cuono, C.B., Langdon, R., Birchall, N., Barttelbort, S., and McGuire, J. (1987) Composite autologous-allogeneic skin replacement: Development and clinical aplication, Plast. Recensir. Surg. 80, 626–637.

    Article  CAS  Google Scholar 

  24. Andreassi L, Pianigiani E, Andreassi A, Taddeucci P, Biagioli M. (1998) A new model ofepidermal culture for the surgical treatment of vitíligo, Int J Dermatol. 37, 595–598.

    Article  CAS  Google Scholar 

  25. Burke, J.F., Yannas, I.V., Quinby, W.C.Jr., Bondoc, C.C., and Jung, W.K.(1981) Successful Use of a Physiologically Acceptable Artificial Skin in the Treatment of Extensive Burn Injury, Ann. Surg. 194, 413–428.

    Article  CAS  Google Scholar 

  26. Yannas, I.V., Burke, J.F., Orgill, D.P., and Skrabut, E.M. (1982) Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin, Science 215, 174–176.

    Article  CAS  Google Scholar 

  27. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GT. Comparative Assessment of Cultured Skin Substitutes and Native Skin Autografi for Treatment of Full-Thickness Burns. Ann Surg 1995;222:743–52.

    Google Scholar 

  28. Wainwright, D., Madden, M., Luterman, A, et al. (1996) Clinical evaluation of an cellular allograft dermal matrix in fuU-thickeness burns, J. Burn Care Rehabil. 17, 124–136.

    Article  CAS  Google Scholar 

  29. Bell, E., Erlich, H.P., Buttle, D., and Nakatsuji, T. (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness, Science 211, 1052–1054.

    Article  CAS  Google Scholar 

  30. Falanga, V.J. (2000) Tissue engineering in wound repair, Adv Skin Wound Care 13, 15–9

    CAS  Google Scholar 

  31. Stoppie, P., Borghgraef, P., De Wever, B., Geysen, J., and Borgers, M. (1993) The epidermal architecture of an in vitro reconstructed human skin equivalent, EurJ Morphol. 31, 26–29.

    CAS  Google Scholar 

  32. Reháková, M., Bakoš, D., Vizárová, K., Soldán, M., and Juríčková, M. (1996) The study of properties of collagen and hyaluronic acid composite materials. The modification by chemical crosslinking, J. Biomed. Mat. Res. 30, 369–372.

    Article  Google Scholar 

  33. Koller, J., Bakoš, D. and Sadloňová, I. (2000) Biocompatibility studies of a new biosynthetic dermal substitute based on collagen/hyaluronan conjugate, J. Cell. Tissue Baking 1, 75–80

    Article  CAS  Google Scholar 

  34. Koller J., Bakoš D., Sadloňová I.(2001) Biocompatibility studies of modified collagen/hyaluronan membranes after explantation. J. Cell. Tissue Baking, in press.

    Google Scholar 

  35. ISO 10993—6 (1994) Tests for local effects after implantation, Biological evaluation of medical devices—Part 6.

    Google Scholar 

  36. Vizárová, K, Bakoš, D., Reháková, M., Petríková, M., Panáková, E., and Koller, J. (1995) The Modification of Layered Atelocollagen: Enzymatic Degradation and cytotoxicity Evaluation, Biomaterials 16, 1217–1221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bakoš, D., Koller, J. (2002). Membranes and Hydrogels in Reconstructive Surgery. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics