Skip to main content

Polymeric Matrices for Release of Growth Factors, Hormones and Other Bioactive Agents

  • Chapter
  • 498 Accesses

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

The treatment, repair and regeneration of damaged tissues, which is the aim of modern tissue engineering, can be tailored to provide the optimum environment incorporating controlled release of the appropriate active compounds. In this sense, a big challenge is to optimize the delivery of immunosuppressors, hormones, growth factors, vitamins and other active agents. Great efforts are nowadays directed towards the preparation of matrices for the controlled delivery of this kind of compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman, A.S. (1998) A commentary on the advantages and limitations of synthetic polymer-biomolecule conjugates, in T. Okano (ed.), Biorelated polymer and gels, Academic Press, San Diego, pp. 231–248.

    Google Scholar 

  2. Ringsdorf, H. (1975) Structure and properties of pharmacologically active polymers, J. Polym. Sci Polym.Symp. 51, 35–53.

    Google Scholar 

  3. Duncan, R. (1992) Drug-polymer conjugates: potential for improved chemotherapy, Anti-Cancer Drugs 3, 175–210.

    Article  CAS  Google Scholar 

  4. Putnam, D. and Kopecek J. (1995) Polymer conjugates with anticancer activity, Adv. in Polym. Sci. 122, 55–123.

    Article  CAS  Google Scholar 

  5. Maeda, H. (1991) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy, Adv. Drug Delivery Review 6, 181–202.

    Article  CAS  Google Scholar 

  6. Ortiz, C, Vázquez, B. and San Román, J. (1998) Synthesis, characterization and properties of polyacrylic systems derived from vitamin E, Polymer 39, 4107–4114.

    Article  CAS  Google Scholar 

  7. Rodríguez, G., Gallardo, A., San Román, J., Rebuelta, M., Bermejo, P., Buján, J., Bellón, J.M., Honduvilla, N.G. and Escudero, C. (1999) New resórbanle polymeric systems with antithrombogenic activity, J. Mater. Sci Mater, in Med. 10, 873–878.

    Article  Google Scholar 

  8. Elvira, C. and San Román, J. (1997) Complexation of polymeric drugs based on polyacrylic chains with aminosalicylic acid side groups, J. Mat. Sci.: Mat. in Med. 8, 743–746.

    Article  CAS  Google Scholar 

  9. liso, P.A., Rebuelta, M., San Román, J., Gallardo, A. and Villar A.M. (1995) Antinociceptíve and antipyretic properties of a new conjugated ibuprofen-methacrylic polymeric controlled delivery system, J. Controlled Release 33, 429–436.

    Article  Google Scholar 

  10. Gallardo, A. and San Román, J. (1993) Synthesis and characterization of a new poly(methacrylamide) bearing side groups of biomedicai interest, Polymer 34, 394–400.

    Article  CAS  Google Scholar 

  11. Gallardo, A., Parejo, C. and San Román, J. (2001) NSAIDs bound to methacrylic carriers: microstructural characterization and in vitro release analysis, J. Controlled Release 71, 127–140.

    Article  CAS  Google Scholar 

  12. Vázquez, B., Ortiz, C, San Román, J., Plasencia, M.A. and López-Bravo, A. (2000) Hydrophilic polymers derived from vitamin E, J. Biomat. Appl. 15, 118–139.

    Article  Google Scholar 

  13. San Román, J., Escudero, M.C., Gallardo, A., Santa Cruz, R., Jorge, E., de Haro, J., Álvarez, L, Millán, J., Buján, J., Bellón, J.M. and Castillo-Olivares, J.C. (1994) Application of new coating for vascular graffe based on polyacrylic systems with antiaggregating activity, Biomaterials 15, 759–765.

    Article  Google Scholar 

  14. San Roman, J., Buján, J., Bellón, J.M., Gallardo, A., Escudero, M.C., Jorge, E., de Haro, J., Álvarez, L. and Castillo-Olivares, J.C. (1996) Experimental study of the antithrombogenic behavior of dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicylic acid residues, J. Biomed. Mater. Res.32, 19–27.

    Article  CAS  Google Scholar 

  15. Guiteras, P., Altimiras, J., Aris, A, Auge, J.M., Bassons, T., Bonal, J., Casalps, J.M., Castellarnau, C, Crexells, C, Masotti, M., Oriol, A., Padró, J.M. and Rutilant, M. (1989) Prevention of aortocoronary veingraft attrition with low-dose aspirin and triflusaL both associated with dipyridamole: a randomized, double-blind, placebo-controlled trial, Eur. Heart J. 10, 159–167.

    Article  CAS  Google Scholar 

  16. de 1a Cruz, J.P., Villalobos, M.A., García, P.J., Smith-Agreda, J.M. and Sánchez de 1a Cuesta, F. (1995) Effects of triflusal and its main metabolite HTB on platelet interacting with subendothelium in healthy volunteers, Eur. J. Clin. Pharmacol. 47, 497–502.

    Article  CAS  Google Scholar 

  17. Rodríguez, G., Gallardo, A., Rebuelta, M., Bermejo, P., Buján, J., Bellón, J.M., Honduvilla, N.G., Escudero, C. and San Román, J. (manuscript submitted) Polymeric hydrophilic systems derived from aine’s: characterization and in vitro release of polyacrylic systems of triflusal, J. Biomat. Sci. Polym. Edn.

    Google Scholar 

  18. de Queiroz, A.A.A., Gallardo, A. and San Roman, J. (2000) Vinyl pyrrolidone-N,N-dimethyl acrylamide water soluble copolymers: synthesis, physical-chemical properties and protein interactions, Biomaterials 21, 1631–1643.

    Article  Google Scholar 

  19. Davaran, S. and Entezami, A.A. (1998) Hydrophilic copolymers prepared from acrylic type derivatives of ibuprofen containing hydrolyzable thioester bond, Eur. Polym. J. 34, 187–192.

    Article  CAS  Google Scholar 

  20. Davaran, S. and Entezami, A.A. (1997) Acrylic type polymers containing ibuprofen and indomethacin with difunctional spacer group: synthesis and hydrolysis, J. Control. Rel. 47, 41–49.

    Article  CAS  Google Scholar 

  21. Cecchi, R., Rusconi, L., Tauzi, H.C., Danusso, F. and Ferrati, P. (1981) Synthesis and pharmacological evaluation of poly(oxyethylene) derivatives of 4-isobutylphenyl-2-propionic acid (ibuprofen), J. Med. Chem. 24, 622–625.

    Article  CAS  Google Scholar 

  22. Larsen, C. and Johansen, M. (1989) Incorporation of acrylic salicylic derivatives to hydrophilic copolymer systems with biomedicai applications, Acta Pharm. Nordica 2, 57–66.

    Google Scholar 

  23. Kydonieus, A, (ed.) (1991) Treatise on controlled drug delivery, Marcel Deker, New York.

    Google Scholar 

  24. Mathiowitz, E. (ed.) (1999) Encyclopedia of Controlled Drug Delivery, Wiley, New York.

    Google Scholar 

  25. Chapekar, M.S. (2000) Tissue engineering: challenges and opportunities, J. Biomed. Mat. Res. (Applied Biomaterials) 53, 617–620.

    Article  CAS  Google Scholar 

  26. Gooch, K., Blunk, T., Vunjak-Novakovic, G., Langer, R., Freed, L. and Tennant, C.J. (1998) Mechanical forces and growth factors utilized in tissue engineering, in C.W. Patric Jr., A. Mikos, L.V. Mclntire (eds.), Frontiers tissue engineering, Pergamon, Oxford, Chapter n.3

    Google Scholar 

  27. Deuel, T.F. and Zhang, N. (2000) Growth factors, in R.P. Lanza, R. Langer, J. Vacanti (eds.) Principles of tissue engineering, Academic Press, San Diego, chapter 12.

    Google Scholar 

  28. Langer, R. and Vacanti, J.P. (1993) Tissue engineering, Science 260, 920–926.

    Article  CAS  Google Scholar 

  29. Reddi, A.H. (1994) Symbiosis of biotechnology and biomalerials: Applications in tissue engineering of bone and cartilage, J. cellular biochemistry 56:192–195.

    Article  CAS  Google Scholar 

  30. Saltzman, W.M. (1996) Growth-factor delivery in tissue engineering, MRS bull, nov, 62–65.

    Google Scholar 

  31. Burg, K.J.L., Porter, S. and Kellam J.F. (2000) Biomaterial development for bone tissue engineering, Biomaterials 21, 2347–2359.

    Article  CAS  Google Scholar 

  32. Gallardo, A., Lemus, AR., San Román, J., Cifuentes, A. and Diez-Masa, J.C. (1999) Micellar electrokinetic chromatography applied to copolymer systems with heterogeneous distribution, Macromolecules 32, 610–617.

    Article  CAS  Google Scholar 

  33. Narasimhan, B. and Peppas, NA (1997) Molecular analysis of drug delivery systems controlled by dissolution of the polymeric carrier, J. Pharm. Sci. 86, 297–304.

    Article  Google Scholar 

  34. BelL C.L. and Peppas, N.A. (1995) Biomedicai membranes from hydrogels and interpolymer complexes, Adv. Polym. Sci. 122, 125–176.

    Article  CAS  Google Scholar 

  35. Laporte, R.J. (1997) Hydrophilic polymer coatings for medical devices. Technomic PbL, Lancaster, p. 58.

    Google Scholar 

  36. Blanco, M.D., Trigo, R.M., García, O. and Teijón, J.M. (1997) Controlled release of cytarabine from poly(2-hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels, J. Biomater. Sci. Polym. Edn. 8, 709–719.

    Article  CAS  Google Scholar 

  37. Gallardo, A., Fernández, F., Bermejo, P., Rebuelta, M., Cifuentes, A., Diez-Masa, J.C. and San Román, J. (2000) Controlled release of cyclosporine from VP-HEMA copolymer systems of adjustable resorption monitorized by MEKC, Biomaterials 21, 915–921.

    Article  CAS  Google Scholar 

  38. Hassan, M.M.A., Al-Yahya, M.A. (1987) Cyclosporine, in K. Florey (ed.) Analytical Profiles of Drug Substances, Academic Press, London, 16, pp. 146–206.

    Google Scholar 

  39. Cifuentes, A., Diez-Masa, JC., Montenegro, C., Rebuelta, M., Gallardo, A., Elvira, C. and San Román, J. (2000) Recombinant growth hormone delivery systems based on vinylpyrrolidone-hydroxyethyl methacrylate copolymer matrices: Monitoring optimization by capillary zone electrophoresis, J. Biomater.Sci. Polymer Edn. 11, 993–1005.

    Article  CAS  Google Scholar 

  40. Gallardo, A., Fernández, F., Cifuentes, A., Diez-Masa, J.C., Bermejo, P., Rebuelta, M., López-Bravo, A., and San Román J. (2001) Modulated release of cyclosporine from soluble vinyl-pyrrolidone-hydroxyethyl methacrylate copolymer hydrogels. A correlation of “in vitro” and “in vivo” experiments, J. Controlled Release 72, 1–11.

    Article  CAS  Google Scholar 

  41. Folkman, J. and Langer, R. (1976) Polymers for sustained release of proteins and other macromolecules, Nature 263, 797–800.

    Article  Google Scholar 

  42. Tomás, D., de Pedro, J.A., López Bravo, A., Lemus-Q, R., Gallardo, A. and San Román, J. (1998) Regeneration of peripheral nerve gaps stimulated by resorbable hydrogels, growth homone and guided by hollow fibres, Proceeding of 14th ESB Conference, The Hague, p. 184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gallardo, A., Abraham, G.A., Elvira, C., Vázquez, B., San Román, J. (2002). Polymeric Matrices for Release of Growth Factors, Hormones and Other Bioactive Agents. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics