Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

Over the past decade there has been an exponential increase in the use of biodegradable polymers in the field of orthopaedics. Such materials are used to fabricate fracture fixation rods, plates, screws, staples, clips, arrows, hooks, suture anchors, sutures and more recently for producing scaffolds for musculoskeletal tissue engineering. Most biodegradable polymeric materials slowly degrade in the body due to hydrolysis or through enzymatic pathways. This renders the need for a second surgery to remove the implant unnecessary. Not only does this reduce healthcare costs but also patient morbidity. Another significant advantage in using biodegradable fixation devices is that such systems can potentially reduce the effects of stress shielding. Bone is a living tissue and remodels in response to the loads it experiences — a phenomenon commonly known as Wolff’s Law. In the presence of stiff metal implants, the load on the bone is significantly reduced, and hence, over the long term bone would have a propensity for osteopenia — a phenomenon described as stress-shielding. Fixation devices fabricated from biodegradable polymers can potentially offset this problem because as the fixation device degrades, its mechanical properties deteriorate. Thus, it can support only a decreasing level of load, which results in gradual reloading of the supported or repaired bone until full load bearing is restored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athanasiou, K.A., Niederauer, G.G. and Agrawal, C.M. (1996) Sterilization, toxicity, biocompatibility, and clinical applications of polylactic acid/polyglycolic acid copolymers, Biomaterials 17(2), 93–102.

    Article  CAS  Google Scholar 

  2. Agrawal, C.M., Niederauer, G.G. and Athanasiou, K.A. (1995) Fabrication and characterization of PLA-PGA orthopaedic implants, Tissue Engineering 1(3), 241–252.

    Article  CAS  Google Scholar 

  3. Agrawal, C.M., Niederauer, G.G., Micallef, D.M. and Athanasiou, K.A., Chapter 30: The use of PLA-PGA polymers in orthopaedics, in Encylopedic Handbook of Biomaterials and Bioengineering. 1995, Marcel Dekker: N.Y. p. 2081–2115.

    Google Scholar 

  4. Gilding, D.K. and Reed, A.M. (1979) Biodegradable polymers for use in surgery-polyglycolic/poly (lactic acid) homo-and copolymers: 1., Polymer 20, 1459–1464.

    Article  CAS  Google Scholar 

  5. Eling, B., Gogolewski, S. and Pennings, A.J. (1982) Biodegradable materials of poly(L-lactic acid): 1. Melt-spun and solution spun fibres. Polymer 23, 1587–1593.

    Article  CAS  Google Scholar 

  6. Miller, RA., Brady, J.M. and Cutright, D.E. (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios, Journal of Biomedicai Materials Research 11, 711–719.

    Article  CAS  Google Scholar 

  7. Lewis, D.H., Controlled release of bioactive agents from lactide/glycolide polymers, in Biodegradable Polymers as Drug Delivery Systems, M. Chasin and R. Langer, Editors. 1990, Marcel Dekker, Inc.: New York. p. 1–41.

    Google Scholar 

  8. Williams, D.F., Some observations on the role of cellular enzymes in the in vivo degradation of polymers, in Corrosion and Degradation of Implant Materials, B.C. Syrett and A. Acharya, Editors. 1979. p. 61–75.

    Google Scholar 

  9. Hollinger, J.O. and Schmitz, J.P. (1987) Restoration of bone discontinuities in dogs using a biodegradable implant, Journal of Oral and Maxillofacial Surgery 45, 594–600.

    Article  CAS  Google Scholar 

  10. Heckman, J.D., Boyan, B.D., Aufdemorte, T.B. and Abbott, J.T. (1991) The use of bone morphogenetic protein in the treatment of non-union ina canine model, J Bone Joint Surg (Am) 73(5), 750–764.

    CAS  Google Scholar 

  11. Agrawal, CM., Bert, J., Heckman, J.D. and Boyan, B.D. (1995) Protein release kinetics of a biodegradable implant for fracture non-unions., Biomaterials 16(16), 1255–1260.

    Article  CAS  Google Scholar 

  12. Hamalainen, K.M., Maatta, R., Piirainen, H., Sarkola, M., Vaisanon, A., Ranta, V.P. and Urtti, A. (1998) Roles of acid/base nature and molecular weight in drug release from matrices of gelfoam and monoisopropyl ester of poly(vinyl methyl ether-maleic anhydride), J Controlled Release 56(1-3), 273–283.

    Article  Google Scholar 

  13. Hanes, J., Chiba, M. and Langer, R. (1998) Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery, Biomaterials 19(1-3). 163–172.

    Article  CAS  Google Scholar 

  14. Chiba, M. Hanes, J. and Langer, R. (1997) Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres, Biomaterials 18(13), 893–901.

    Article  CAS  Google Scholar 

  15. Chasin, M., Lewis, D. and Langer, R. (1988) Polyanhydrides for controlled drug delivery, Biopharm Mfg. 1 33–46.

    CAS  Google Scholar 

  16. Ibim, S.E., Uhrich, K.E., Attawia. M., Shastri, V.R., El-amin, S.F., Bronson, R., Langer, R., and Laurencin, C.T. (1998) Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model, J Biomed Mater Res 43(4), 374–379.

    Article  CAS  Google Scholar 

  17. Ibim, S.M., Uhrich, K.E., Bronson, R., El-Amin, S.F., Langer, R.S. and Laurencin, C.T. (1998) Poly(anhydride-co-imides): In vivo biocompatibility in a rat model, Biomaterials 19(10), 941–951.

    Article  CAS  Google Scholar 

  18. Peter, S.J., Yaszemski, M.J., Suggs, L.J., Payne, R.G., Langer, R., Hayes, W.C, Unroe, M.R., Alemany, L.B., Engel, P.S., and Mikos, A.G. (1997) Characterization of partially saturated polypropylene fumarate) for orthopaedic application, J Biomater Sci, Poìym Ed 8(11), 893–904.

    Article  CAS  Google Scholar 

  19. Peter, S.J., Miller, ST., Zhu, G., Yasko, G. and Mikos, A.G. (1998) In vivo degradation of a poly(propylene fumaratej/beta-tricalcium phosphate injectable scaffold, J. Biomed. Mater. Res. 41(1), 1–7.

    Article  CAS  Google Scholar 

  20. Yaszemski. M.J., Payne, R.G., Hayes, W.C, Langer, R.S., Aufdemorte, T.B. and Mikos, A.G. (1995) The ingrowth of new bone tissue and initial mechanical properties of a degradable polymeric composite scaffold, Tissue Engineering 1(41–52).

    Article  CAS  Google Scholar 

  21. Peter, S.J., Lu, L., Kim, D.J. and Mikos, A.G. (2000) Marrow Stromal Osteoblast Function on a Poly(propylene Fumarate)/B-Tricalcium Phosphate Biodegradable Orthopaedic Composite, Biomaterials 21, 1207–1213.

    Article  CAS  Google Scholar 

  22. Hasirci, V., Lewandrowski, K.U., Bondre, S.P., Gresser, J.D., Trantolo, D.J. and Wise, D.L. (2000) High strength bioresorbable bone plates: preparation, mechanical properties and int vitro analysis., Biomed Mater Eng 10(1), 19–29.

    CAS  Google Scholar 

  23. Lewandrowski, K.U., Gresser, J.D., Wise, D.L., White, R.L. and Trantolo, D.J. (2000) Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement., Biomaterials 21(3), 293–8.

    Article  CAS  Google Scholar 

  24. Kohn, J. and Langer, R. (1986) Poly(iminocarbonates) as potential biomaterials, Biomaterials 7(3), 176–182.

    Article  CAS  Google Scholar 

  25. Li, C. and Kohn, J. (1989) Synthesis of poly(iminocarbonates): Degradable polymers with potential applications as disposable plastics and as biomaterials, Macromolecules 22, 2029–2036.

    Article  CAS  Google Scholar 

  26. Pulapura, S., Li, C. and Kohn, J. (1990) Structure-property relationships for the design of polyiminocarbonates, Biomaterials 11(9), 666–678.

    Article  CAS  Google Scholar 

  27. Kohn, J., Pseudo-poly (amino acids), in Biodegradable Polymers as Drug Delivery Systems, R.L.a. M. Chasin, Editor. 1990, Marcel Dekker, Inc.: New York, NY. p. 195–229.

    Google Scholar 

  28. Choueka, J., Charvet, J.L., Koval, K.J., Alexander, H., James, K.S., Hooper, K.A. and Kohn, J. (1996) Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid), J Biomed Mater Res 31(1), 35–41.

    Article  CAS  Google Scholar 

  29. Ertel, S.I., Kohn, J., Zimmerman, M.C. and Parsons, J.R. (1995) Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications, J Biomed Mater Res 29(11), 1337–1348.

    Article  CAS  Google Scholar 

  30. Tangpasuthadol, V., Pendharkar, S.M., Peterson, R.C. and Kohn, J. (2000) Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices., Biomaterials 21(23), 2379–87.

    Article  CAS  Google Scholar 

  31. Tangpasuthadol, V., Pendharkar, S.M. and Kohn, J. (2000) Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. PartI: study of model compounds., Biomaterials 21(23), 2371–78.

    Article  CAS  Google Scholar 

  32. Allen, C, Yu, Y., Maysinger, D. and Eisenberg, A. (1998) Polycaprolactone-b-polyfethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818, Bioconjug Chem 9(5), 564–572.

    Article  CAS  Google Scholar 

  33. Pitt, C, Poly-epsilone-caprolactone and its copolymers, in Biodegradable Polymers as Drug Delivery Systems, R.L.a. M. Chasin, Editor. 1990, Marcel Dekker, Inc.: New York, NY. p. 71–120.

    Google Scholar 

  34. Lowry, K.J., Hamson, K.R., Bear, L., Peng, Y.B., Calaluce, R., Evans, M.L., Anglen. J.O., and Allen, W.C. (1997) Polycaprolactone/glass bioabsorbable implant in a rabbit humérus fracture model, J. Biomed. Mater. Res. 36(4), 536–41.

    Article  CAS  Google Scholar 

  35. Gupta, M.C. and Deshmukh, V.G. (1983) Radiation effects on poly(lactic acid). Polymer 24, 827–830.

    Article  CAS  Google Scholar 

  36. Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, S.-H. and Ikada, Y. (1992) In vitro and in vivo studies on bioabsorbable ultra-high-strength poly (L-lactide) rods, Journal of Biomedicai Materials Research 26, 1553–1567.

    Article  CAS  Google Scholar 

  37. Suuronen, R., Pohjonen, T., Taurio, R., Törmälä, P., Wessman, L., Rönkkö, K. and Vainionpää, S. (1992) Strength retention of self-reinforced poly-L-lactide screws and plates: an in vivo and in vitro study, Journal of Materials Science: Materials in Medicine 3, 426–431.

    Article  CAS  Google Scholar 

  38. Engelberg, I. and Kohn, J. (1991) Physico-mechanical properties of degradable polymers used in medical applications: A comparative study, Biomaterials 12(3), 292–304.

    Article  CAS  Google Scholar 

  39. Andriano, K.P., Pohjonen, T. and Tormala, P. (1994) Processing and characterization of absorbable polylactide polymers for use in surgical implants, Journal of Applied Biomaterials 5, 133–140.

    Article  CAS  Google Scholar 

  40. Christel, P., Chabot, F., Leray, J.L., Morin, C. and Vert, M. Biodegradable composites for internal fixation, in Biomaterials 1980, G.L. Winters, D.F. Gibbons, and H. Plenk, Editors. 1982, John Wiley &Sons. p. 271–280.

    Google Scholar 

  41. Birmingham Polymers, I., Properties of biodegradable polymers,. 1993.

    Google Scholar 

  42. Daniels, A.U., Chang, M.K.O. and Andriano, K.P. (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. Journal of Applied Biomaterials 1, 57–78.

    Article  CAS  Google Scholar 

  43. Törmälä, P., Vasenius, J., Vainiompää, S., Pohjonen, T., Rokkanen, P. and Laiho, J. (1991) Ultra high strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: In vitro and in vivo study, Journal of Biomedicai Materials Research 25, 1–22.

    Article  Google Scholar 

  44. Vainionpää, S., Kilpikari, J., Laiho, J. Helevirta, P., Rokkanen, P. and Törmälä, P. (1987) Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation, Biomaterials 8(January), 46–48.

    Article  Google Scholar 

  45. Kumta, S.M. and Leung, P.C. (1998) The technique and indications for the use of biodegradable implants in fractures of the hand., Techniques in Orthopaedics 13(2), 160–163.

    Article  Google Scholar 

  46. Becker, R., Schroder, M., Starke, C, Urbach, D. and Nebelung, W. (2001) Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human menicus., Arthroscopy 17(5), 439–44.

    Article  CAS  Google Scholar 

  47. Barber, F.A. and Herbert, M.A. (2000) Meniscal repair devices., Arthroscopy 16(6), 613–8.

    Article  CAS  Google Scholar 

  48. Dervin, G.F., Downing, K.J., Keene, G.D. and McBride, D.G. (1997) Failure strengths of suture versus biodegradable arrow for meniscal repair: an in vitro study., Arthroscopy 13(3), 296–300.

    Article  CAS  Google Scholar 

  49. Lajtai, G., Schmiedhuber, G., Unger, F., Aitzetmuller, G., Klein, M., Noszian, I. and Orthner, E. (2001) Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up., Arthroscopy 17(6), 597–602.

    Article  CAS  Google Scholar 

  50. Barber, F.A., Elrod, B.F., McGuire, D.A. and Paulos, L.E. (1995) Preliminary results of an absorbable interference screw, Arthroscopy 11(5), 537–548.

    Article  CAS  Google Scholar 

  51. Svensson, P., Janary, P. and Hirsch, G. (1994) Internal fixation with biodegradable rods in pediatric fractures: one-year follow-up of fifty patients., J Pediatr Orthop 14, 220–4.

    Article  CAS  Google Scholar 

  52. Hope, P.G., Williamson, D.M., Coates, C.J. and Cole, W.G. (1991) Biodegradable pin fixations of elbow fractures in children. A randomized trial., J Bone Joint Surg [Br] 73, 965–8.

    CAS  Google Scholar 

  53. Fraser, R.K. and Cole, W.G. (1992) Osteolysis after biodegradable pin fixation of fractures in children, Journal of Bone and Joint Surgery 74-B(November), 929–930.

    Google Scholar 

  54. Hirvensalo, E., Bostman, O., Tormala, P., Vainoonpaa, S. and Rokkanen, P. (1991) Chevron osteotomy fixed with absorbable polyglycolide pins, Foot&Ankle Journal 11, 212–218.

    CAS  Google Scholar 

  55. Brunetti, V.A., Trepal, M.J. and Jules, K.T. (1991) Fixation of the austin osteotomy with bioresorbable pins, The Journal of Foot Surgery 30(1), 56–65.

    CAS  Google Scholar 

  56. Böstman, O., Hirvensalo, E., Vainionpää, S., Mäkelä, A., Vihtonen, K., Törmälä, P. and Rokkanen, R. (1989) Ankle fractures treated using biodegradable internal fixation, Clinical Orthopaedics and Related Research 238(1), 195–203.

    Google Scholar 

  57. Pihlajamäki, H.K. and Böstman, O.M. (1998) Biodegradable expansion bolt for fractures of the medial malleolus., Techniques in Orthopaedics 13(2), 177–9.

    Article  Google Scholar 

  58. Lavery, L.A., Higgins, K.R., Ashry, H.R. and Athanasiou, K.A. (1994) Mechanical characteristics of poly-L-lactic acid absorbable screws and stainless steel screws in basilar osteotomies of the first metatarsal, The Journal of Foot and Ankle Surgery 33(3), 249–254.

    CAS  Google Scholar 

  59. Hoffmann, R., Krettek, C, Haas, N. and Tscherne, H. (1989) Die distale Radiusfraktur. Frakturstabilisierung mit biodegradablen Osteosynthes Stiften (Biofix), Experimentelle Untersuchungen und erste klinische Erfahrungen. 92, 430–434.

    CAS  Google Scholar 

  60. Hirvensalo. E., Böstman, O., Vainionpää, S., Törmälä, P. and Rokkanen, P. (1988) Biodegradable fixation in intraarticulate fractures of the elbow joint., Acta Orthop. Scandinavica Supplementum, 227, 78–79.

    Google Scholar 

  61. Casteleyn, P.P., Handelberg, F. and Haentjens, P. (1992) Biodegradable rods versus Kirschner wire fixation of wrist fractures, Journal of Bone and Joint Surgery 74B, 858–861.

    Google Scholar 

  62. Gerbert, J. (1992) Effectiveness of absorbable fixation devices in Austin bunionectomies, Journal of the American Pediatric Medical Association 82(4), 189–195.

    CAS  Google Scholar 

  63. Agrawal, CM., McKinney, J.S., Huang, D. and Athanasiou, K.A., The use of the vibrating particle technique to fabricate highly permeable biodegradable scaffolds, in STP 1396: Synthetic Bioabsorbable Polymers for Implants, CM. Agrawal, J. Parr, and S. Lin, Editors. 2000, ASTM, 99–114.

    Google Scholar 

  64. Freed, L.E., Vunjak-Novakovic, G., Biron. R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K. and Langer, R. (1994) Biodegradable polymer scaffolds for tissue engineering, Biotechnology (NY) 12(7), 689–693.

    Article  CAS  Google Scholar 

  65. Ishaug-Riley, S. (1997) Bone formation by three-dimensional stromal Osteoblast culture in biodegradable polymer scaffolds, J of Biomed Mater Res 36(1), 17–28.

    Article  Google Scholar 

  66. Peter, S.J., Miller, M.J., Yasko, A.W., Yaszemski, M.J. and Mikos, A.G. (1998) Polymer concepts in tissue engineering, J Biomed Mater Res 43(4), 422–427.

    Article  CAS  Google Scholar 

  67. Agrawal, CM. and Ray, R.B. (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering., J Biomed Mater Res 55(2), 141–50.

    Article  CAS  Google Scholar 

  68. Klompmaker (1991) Porous polymer implant for repair of meniscal lesions: A preliminary study in dogs, Biomaterials 12(9), 810–816.

    Article  CAS  Google Scholar 

  69. Ishaug-Riley, S.L., Crane-Kruger, G.M., Yaszemski, MJ. and Mikos, A.G. (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers, Biomaterials 19(15). 1405–1412.

    Article  CAS  Google Scholar 

  70. Kim, WS., Vacanti, J.P., Cima, L„ Mooney, D., Upton, J„ Puslacher, W.C. and Vacanti, CA. (1994) Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers, Plast Reconstr Surg 94(2), 233–240.

    Article  CAS  Google Scholar 

  71. Vacanti, CA. and Upton, J. (1994) Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices, Clin Plast Surg 21(3), 445–462.

    CAS  Google Scholar 

  72. Agrawal, CM., McKinney, J. and Athanasiou, K.A. (2000) Effects of flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering., Biomaterials 21(23), 2443–2452.

    Article  CAS  Google Scholar 

  73. Athanasiou, K.A., Schmitz, J.P. and Agrawal, CM. (1998) The effects of porosity on degradation of PLA-PGA implants. Tissue Engineering 4, 53–63.

    Article  CAS  Google Scholar 

  74. Freed, L.E., Vunjak-Novakovic, G. and Langer, R. (1993) Cultivation of cell-polymer cartilage implants in bioreactors, J Cell Biochem 51(3), 257–264.

    Article  CAS  Google Scholar 

  75. Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A.J., Langer, R. and Freed, L.E. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineering cartilage, J Orthop Res 17(1), 130–138.

    Article  CAS  Google Scholar 

  76. Rozema, F.R., Bos, R.R.M., Boering, G., Asten, J.A.A. M.v., Nijenhuls, A.J. and Pennings, A.J. (1991) The effects of different steam-sterilization programs on material properties of poly (L-lactide)., Journal of Applied Biomaterials 2, 23–28.

    Article  CAS  Google Scholar 

  77. Chu, C.C. and Williams, D.F. (1983) The effect of gamma irradiation on the enzymatic degradation of polyglycolic acid absorbable sutures., Journal of Biomedicai Materials Research 17, 1029–1040.

    Article  CAS  Google Scholar 

  78. Verheyen, C.C.P.M., Wijn, J.R.d., Blitterswijk, C.A.v. and Groot, K.d. (1992) Evaluation of hydroxylapatite/poly(L-lactide) composites: Mechanical behavior, Journal of Biomedicai Materials Research 26, 1277–1296.

    Article  CAS  Google Scholar 

  79. Vink, P. and Pleijsier, K. (1986) Aeration of ethylene oxide-sterilized polymers, Journal of Biomaterials 7, 225–230.

    Article  CAS  Google Scholar 

  80. Zislis, T., Martin, S.A., Cerbas, E., Heath, J.R., Mansfield, J.L. and Hollinger, J.O. (1989) A scanning electron microscopic study in vitro toxicity of ethylene-oxide-sterilized bone repair materials, Journal of Oral Implantology 25(1), 41–46.

    Google Scholar 

  81. Matthews, I.P., Gibson, C. and Samuel, A.H. (1989) Enhancement of the kinetics of the aeration of ethylene oxide sterilized polymers using microwave radiation, Journal of Biomedicai Materials Research 23, 143–156.

    Article  CAS  Google Scholar 

  82. Puolakkainen, P.A., Ranchalis, J.E., Strong, D.M. and Twardzik, D.R. (1993) The effect of sterilization on transforming growth factor B isolated from demineralized human bone. Transfusion 33. 679–685.

    Article  CAS  Google Scholar 

  83. Doherty, M.J., Mollan, R.A.B, and Wilson, D.J. (1993) Effect of ethylene oxide sterilization on human demineralized bone, Journal of Biomaterials 14(13), 994–998.

    Article  CAS  Google Scholar 

  84. Ijiri, S., Yamamuro, T., Nakamura, T., Kotani, S. and Notoya, K. (1994) Effect of sterilization on bone morphogenetic protein, Journal of Orthopaedic Research 12(5), 628–636.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Agrawal, C.M. (2002). Biodegradable Polymers for Orthopaedic Applications. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics