Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 86))

  • 500 Accesses

Abstract

The treatment of diseased or injured arteries has been a key area of contemporary surgery and a focus of intensive research for more than one hundred years. The interposition of a jugular vein segment into the carotid artery, conducted by Carrel as early as 1908 [1], initiated the use of veins for the replacement of artery sections. Among other important contributions to modern cardiovascular surgery, it is worth mentioning the pioneering work performed by Tuffier [2] using paraffin-lined silver tubes to replace damaged arteries, and the study conducted by Blakemore and coworkers [3] on the utilization of non-sutured anastomoses using Vitalium tubes. It is worth stressing, though, that it was the work conducted during the early 1950s, that changed dramatically the world of vascular surgery, by introducing textile vascular grafts. Of special importance was the landmark work published by Blakemore and Voorhees in 1951, who demonstrated the clinical applicability of Vinyon N, as the first fabric arterial prosthesis [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrell (1908) Results of the transplantation of blood vessels, organs and limbs, JAMA 51, 1662–1667.

    Article  Google Scholar 

  2. Tuffier, T. (1915) L’Intubation dans les plaies de grose arteres. Bul. Acad. Nat. Med. (Paris) 74, 455.

    Google Scholar 

  3. Blakemore, A. H., Lord, J. V. and Stefko, P. L. (1942) The severed primary artery in the war wounded: A non-suture method of bridging arterial defects. Surgery 12, 488–508.

    Google Scholar 

  4. Blakemore, A H. and Voorhees, A B. (1954) The use of tubes constructed from Vinyon N cloth in bridging arterial defect. Experimental and clinical. Ann. Surg. 140, 324–338.

    Article  CAS  Google Scholar 

  5. Zacharias, R. K., Kirkman, T. R. and Clowes, A W. (1987) Mechanisms of healing in synthetic grafts, J. Vase Surg. 6, 429–436.

    CAS  Google Scholar 

  6. Callow, D. (1982) Current status of vascular grafts, Surg. Clin. N. Am., 62, 501–506.

    CAS  Google Scholar 

  7. Klement, P., Du, Y. J., Berry, L. Andrew, M. and Chan, A K. C. (2002) Blood-compatible biomaterials by surface coating with a novel antithrombin-heparin covalent complex, Biomaterials 23(2), 527–535.

    Article  CAS  Google Scholar 

  8. Kouvroukoglou, S., Dee, K. C, Bizios, R. Mclntire, L, V. and Zygourakis, K. (2000) Endothelial cell migration on surfaces modified with immobilized adhesive peptides, Biomaterials 21(17), 1725–1733.

    Article  CAS  Google Scholar 

  9. Lu, A. and Sipehia, R. (2001) Antithrombotic and fibrinolytic system of human endothelial cells seeded on PTFE: the effects of surface modification of PTFE by ammonia plasma treatment and ECM protein coatings, Biomaterials 22(11), 1439–1446.

    Article  CAS  Google Scholar 

  10. Wyers, M. C, Phaneuf, M. D., Rzucidlo, E. M., Contreras, M. A, LoGerfo, F. W. and Quist, W. C. (1999) In Vivo assessment of a novel Dacron surface with covalently bound recombinant hirudin, Cardiovascular Pathology8(3), 153–1

    Article  CAS  Google Scholar 

  11. Yoneyama, T., Sugihara, K., Ishihara, K., Iwasaki, Y. and Nakabayashi, N. (2002) The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer, Biomaterials 23, 1455–1459.

    Article  CAS  Google Scholar 

  12. Baquey, Ch., Palumbo, F., Porte-Durrieu, M., Legeay, C. G., Tressaud, A and d’Agostino, R. Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 151, 255–262.

    Google Scholar 

  13. Chandy, T., Das, G. S., Wilson, R. F. and Rao, G. H. R. (2000) Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prostheses, Biomaterials 21, 699–712.

    Article  CAS  Google Scholar 

  14. Korematsu, A, Takemoto, Y., Nakaya, T. and Inoue, H. (2002) Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface, Biomaterials 23, 263–271.

    Article  CAS  Google Scholar 

  15. Lee, J. H., Ju, Y. M. and Kim, D. M. (2000) Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers, Biomaterials 21, 683–691.

    Article  CAS  Google Scholar 

  16. Hermaneen, G, Kraglund, K., Ludwigsen, E., and Mouritzen, C. (1980) Influence of porosity on the viability of the neointima,” Eur. Surg. Res., 12, 349–362.

    Article  Google Scholar 

  17. Guidoin, R., Marceau, D., Rao, T. J., King, M., Merhi, Y., Roy, P. E., Martin, L. and Duval, M. (1987) In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial graft”, Biomaterials 8, 433–441.

    Article  CAS  Google Scholar 

  18. Uretzky, G., Appelbaum, Y., Younes, H., Udasin, R., Nataf, P., Baccioglu, E., Pizof, G., Borman, J. B. and Conn, D. (1990) Long-term evaluation of a new selectively biodegradable vascular graft for right ventricular conduit. An experimental study, 7. Thorac. Cardiovasc. Surg., 100, 769–780.

    CAS  Google Scholar 

  19. Abbott, W.M. and Bouchier-Hayes, DJ. (1978) The role of mechanical properties in graft design, in H. Dardik (ed.) Graft Materials in Vascular Surgery, Chicago, USA

    Google Scholar 

  20. Seifert, KB., Albo, D. and Knowlton, H. Effect of elasticity of prosthetic wall on patency of small diameter arterial prostheses (1979) Surg. Forum 30, 206–208.

    Google Scholar 

  21. Tu R, Mclntyre J, Hata C, Lu CL, Wang E, Quijano RC. (1991) Dynamic internal compliance of a vascular prosthesis. Trans Am Soc Intern Organs 37, M470–M472.

    CAS  Google Scholar 

  22. Abbott W. and Cambria R. (1982) Control of physical characteristics of vascular grafts, in J.C. Stanley (ed.) Biologic and Synthetic Vascular Prostheses, Grune&Stratton, New York, pp. 189–220.

    Google Scholar 

  23. Pevec W.C., Darling D, Litalien D.G. and Abbott W.M. (1992) Femoropopliteal reconstruction with knitted, non-velour Dacron versus expanded poly-tetrafluorethylene, J Vasc Surg 16, 60–65.

    Article  CAS  Google Scholar 

  24. Stewart, S.F.C, and Lyman D.J. (1992) Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech 25, 297–310.

    Article  CAS  Google Scholar 

  25. Weston M.W, Rhee K. and Tarbell J.M. (1996) Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis, J Biomech 29, 187–198.

    Article  CAS  Google Scholar 

  26. Clark, R. E., Apostolou, S. and Kardos, J. L. (1976) Mismatch of mechanical properties as a cause of arterial prostheses thrombosis, Surg. Forum, 27, 208–210.

    CAS  Google Scholar 

  27. Baird, R.N., Kidson, J. L., Italien LG., and Abbot, W.M. (1977) Dynamic compliance of arterial grafts, Am J. Physiol., 233, H568–H572.

    CAS  Google Scholar 

  28. Bos, G.W., Poot A.A., Beugeling, T., Van Aken, W.G. and Feijen J. (1998) Small-diameter vascular graft prostheses: Current status, Arch Physiol Biochem 106, 100–115.

    Article  CAS  Google Scholar 

  29. Abort W.M., (1997) Prosthetic above-knee femoral-popliteal bypass: Indications and choice of graft, Semin Vasc Surg 10, 3–7.

    Google Scholar 

  30. Annis, D., Bornat A., Edwards, R.O., Higham, A., Loveday, B. and Wilson, J., (1978) An elastomeric vascular prosthesis Trans. Am. Soc. Artif. Intern. Organs 24, 209–214.

    CAS  Google Scholar 

  31. Van der Lei, B., Nieuwenhuis, B., Molennar, I. and Wildevuur, Ch. R. H. (1987) Long-term biological fate of neoarteries regenerated in microporous, compliant, biodegradable small-caliber vascular grafts in rats, Surgery 101, 459–467.

    Google Scholar 

  32. Cohn, D., Elchai, Z., Gershon, B., Karck, M., Lazarovici, G., Sela, J., Chandra, M., Marom, G. and Uretzky, G. (1992) Introducing a selectively biodegradable filament wound arterial prosthesis: a short-term implantation study, J Biomed Mater Res 26(9) 1184–1204.

    Article  CAS  Google Scholar 

  33. Doi, K., Nakayama, Y. and Matsuda, T. (1996) Novel compliant and tissue-permeable microporous polyurethane vascular prostheses fabricated using an excimer laser ablation technique, J Biomed Mater Res 31, 27–33.

    Article  CAS  Google Scholar 

  34. Edwards, A., Carson, R.J., Bowald, S. and Quist, W.C. (1995) Development of a microporous compliant small bore vascular graft, J Biomater Appl 10, 171–187.

    CAS  Google Scholar 

  35. Tai, N.R., Salacinski, H., Edwards, A., Hamilton, G. and Seifalian, A.M. (2000) Compliance properties of conduits used in vascular reconstruction. Br J Surg 87, 1480–1488.

    Article  Google Scholar 

  36. Hayashi, K., Takamizawa, K., Saito, T., Kira, K., Hiramatsu, K. and Kondo, K. (1989) Elastic properties and strength of a novel small-diameter, compliant polyurethane vascular graft, J Biomed Mater Res 23(Suppl), 229–244.

    CAS  Google Scholar 

  37. Edwards, A., Carson, R.J., Szycher, M. and Bowald, S. In vitro and in vivo biodurability of a compliant microporous vascular graft. J Biomater Appl 13, 23–45.

    Google Scholar 

  38. L’Heureux, N., Pâquet, S., Labbé, R., Germain, L. and Auger, F. A. (1998) A completely biological tissueengineered human blood vesse,l FASEB J. 12, 47–56.

    Google Scholar 

  39. Weinberg, C. B. and Bell, E. (1986) A blood vessel model constructed from collagen and cultured vascular cells, Science 231, 397–400

    Article  CAS  Google Scholar 

  40. Hirai, J. and Matsuda, T. (1996) Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen-tissue regeneration process, Cell Transplant. 5, 93–105

    Article  CAS  Google Scholar 

  41. L’Heureux, N., Germain, L., Labbe, R. and Auger, F. A. (1993) In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study, J. Vasc. Surg. 17, 499–509

    Article  Google Scholar 

  42. Zilla, P., Deutsch, M., Meinhert, J., et al (1994) Clinical in vitro endothelialization of femoropopliteal bypass grafts: an actuarial follow-up over three years. J. Vascu Surg. 19, 540.

    Article  CAS  Google Scholar 

  43. Stanley, J.C, Burkel, W.E., Ford, J.W., et al. (1982) Enhanced patency of small-diameter, externally supported Dacron iliofemoral grafts seeded with endothelial cells, Surgery 92, 994.

    CAS  Google Scholar 

  44. Kobashi, T. and Matsuda, T. (1999) Fabrication of branched hybrid vascular prostheses, Tissue Engineering 5(6), 515–523.

    Article  CAS  Google Scholar 

  45. Langer, R. and Vacanti, J. P. (1993) Tissue engineering, Science 260, 920–926.

    Article  CAS  Google Scholar 

  46. Guthrie, C. C. (1919) JAMA 73, 18

    Google Scholar 

  47. Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R. and Langer, R. (1999) Functional arteries grown in vitro, Science 284, 489–493.

    CAS  Google Scholar 

  48. Risau, R. and Flamme, I. (1995) Annu. Rev. Cell Dev. Biol. 11, 73.

    Article  CAS  Google Scholar 

  49. Fernandez, P., Bareille, R., Conrad, V., Midy, D. and Bordenave, L. (2001) Evaluation of an in vitro endothelialized vascular graft under pulsatile shear stress with a novel radiolabeling procedure, Biomaterials 22(7), 649–658.

    Article  CAS  Google Scholar 

  50. Birchall, I. E., Lee, V. W. K. and Ketharanathan, V. (2001) Retention of endothelium on ovine collagen biomatrix vascular conduits under physiological shear stress, Biomaterials 22(23), 3139–3144.

    Article  CAS  Google Scholar 

  51. Papadaki, M, and Eskin, S.G. (1997) Effects of fluid shear stress on gene regulation of vascular cells, Biotechnology Progress 13(3), 209–221.

    Article  CAS  Google Scholar 

  52. Nerem, R. M. and Seliktar, D. (2001) Vascular tissue engineering, Annual Review of Biomedicai Engineering 3, 225–243.

    Article  CAS  Google Scholar 

  53. Grottkau, B.E., Noordin, S., Shortkroff, S., Schaffer, J.L., Thomhill, T.S. and Spector, M. (2002) Effect of mechanical perturbation on the release of PGE2 by macrophages in vitro, J Biomed Mater Res, 59(2), 288–293.

    Article  CAS  Google Scholar 

  54. Fisher, A.B., Chien, S., Barakat, A. I. and Nerem, R.M. (2001) Endothelial cellular response to altered shear stress, Am J Physiol Lung Cell Mol Physiol, 281(3), 529–533.

    Google Scholar 

  55. Widmer, M.S. and Mikos A.G. (1998) Fabrication of biodegradable polymer scaffolds for tissue engineering, in: C.W. Patrick Jr, A.G. Mikos and L.V. Mclntire (eds.), Frontiers in Tissue Engineering. Elsevier Science, New York, pp. 107–120.

    Chapter  Google Scholar 

  56. Mikos, A.G., Sarakinos, G., Leite, S.M., Vacanti, J.P. and Langer, R. (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering, Biomaterials 14, 323–330.

    Article  CAS  Google Scholar 

  57. Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P. and Langer, R. (1996) Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials 17, 1417–1422.

    Article  CAS  Google Scholar 

  58. Nam, Y.S., Yoon, J.J. and Park, T.G. (2000) A novel fabrication method for macroporous scaffolds using gas foaming salt as porogen additive, J Biomed Mater Res, Appl Biomater 53, 1–7.

    Article  CAS  Google Scholar 

  59. Yoon, J.J. and Park, T.G. (2001) Degradation behavior of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts, J Biomed Mater Res 55(3), 401–408.

    Article  CAS  Google Scholar 

  60. Nam, Y.S. and Park, T.G. (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47, 8–17.

    Article  CAS  Google Scholar 

  61. Lo, H., Kadiyala, S., Guggino, S.E. and Leong, K.W. (1996) Poly(L-lactic acid) foams with cell seeding and controlled-release capacity, J Biomed Mater Res 30, 475–484.

    Article  CAS  Google Scholar 

  62. Park, A., Wu, B. and Griffith, L.G. (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion, J Biomater Sci, Polym Edn 9, 89–110.

    Article  CAS  Google Scholar 

  63. Mooney, D.J., Mazzoni, C.L., Breuer, G, McNamara, K., Hern, D., Vacanti, J.P. and Langer, R. (1996) Stabilized polyglycolic acid fiber-based tubes for tissue engineering, Biomaterials 17, 115–124.

    Article  CAS  Google Scholar 

  64. Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G. and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers, J Biomed Mater Res 27, 11–23.

    Article  CAS  Google Scholar 

  65. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H. and Tan, K. C. (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling, J Biomed Mater Res 55(2), 203–216.

    Article  CAS  Google Scholar 

  66. Hutmacher, D.W. (2000) Scaffolds in tissue engineering bone and cartilage, Biomaterials 21(24), 2529–2543.

    Article  CAS  Google Scholar 

  67. Zein, L, Hutmacher, D.W., Tan, K.C. and Teoh, S.H. (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications, Biomaterials 23(4), 1169–1185.

    Article  CAS  Google Scholar 

  68. Sonoda, H., Takamizawa, K., Nakayama, Y., Yasui, H. and Matsuda, T. (2001) Small-diameter compliant arterial graft prosthesis: Design concept of coaxial double tubular graft and its fabrication, J Biomed Mater Res 55(3), 266–276.

    Article  CAS  Google Scholar 

  69. Ramakrishna, S., Mayer, J., Wintermantel, E. and Leong, K.W. (2001) Biomedicai applications of polymercomposite materials: a review, Composites Science and Technology 61(9), 1189–1224.

    Article  CAS  Google Scholar 

  70. Espigares, I., Elvira, C, Mano, J.F., Vázquez, B., San Román, J. and Reis, R.L. (2002) New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers, Biomaterials 23(8), 1883–1895.

    Article  CAS  Google Scholar 

  71. Seal, B. L., Otero, T. C. and Panitch, A. (2001) Polymeric biomaterials for tissue and organ regeneration, Materials Science and Engineering: Reports, 34(4-5), 147–230.

    Article  Google Scholar 

  72. Burg K.J.L., Porter, S. and Kellam, J.F. (2000) Biomaterial developments for bone tissue engineering, Biomaterials, 21(23), 2347–2359.

    Article  CAS  Google Scholar 

  73. Cohn, D. and Younes, H. (1988) Biodegradable PEO/PLA block copolymers. J Biomed Mater Res 22, 993–1009.

    Article  CAS  Google Scholar 

  74. Younes, H., Nataf, P.R., Cohn, D., Appelbaum, Y.J., Pizov, G. and Uretzky, G. (1988) Biodegradable PELA block copolymers: in vitro degradation and tissue reaction, Biomaterials, Artificial Cells, and Artificial Organs 16(4), 705–719.

    CAS  Google Scholar 

  75. Cohn, D. and Younes, H. (1989) Compositional and structural analysis of PELA biodegradable block copolymers degrading under in vitro conditions. Biomaterials 10, 466–474.

    Article  CAS  Google Scholar 

  76. Hotovely-Salomon, A. (1999) Biodegradable polymeric scaffolds for vascular tissue engineering [Ph.D. thesis]. Jerusalem, Hebrew University.

    Google Scholar 

  77. Cohn, D., Stern, T., González, M.F. and Epstein, J. (2002) Biodegradable polyethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers, J Biomed Mater Res 59(2), 273–281.

    Article  CAS  Google Scholar 

  78. Hull, D., (1981) An Introduction to Composite Materials, Cambridge University Press, UK.

    Google Scholar 

  79. Agarwal, B.D. and Broutman, L.J. (1980) Analysis and Performance of Fiber Composites, John Wiley&Sons, USA.

    Google Scholar 

  80. Mallick, P.K., (1988) Fiber-Reinforced Composites, Marcel Dekker, USA.

    Google Scholar 

  81. Merrill, E.W. and Salzman, E.W. (1983) Polyethylene oxide as a biomaterial, ASAIO J. 6(2), 60–64.

    CAS  Google Scholar 

  82. Drumheller, P.D. and Hubbell, J.A. (1995) Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surf aces, J Biomed Mater Res 29(2), 207–215.

    Article  CAS  Google Scholar 

  83. Ridane, A., McPberson, T., Shim, H.S. and Park, K. (2000) Surface modification of polyethylene terephthalate using PEO-polybutadiene-PEO triblock copolymers, Colloids and Surfaces B: Biointerfaces, 18(3-4) 347–353.

    Article  Google Scholar 

  84. Zou, X. P., Kang, E. T. and Neoh, K.G. (2002) Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption, Surface and Coatings Technology 149(2-3), 119–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cohn, D., Marom, G. (2002). Scaffolding Arterial Tissue. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics