Skip to main content

Craniofacial Bone Tissue Engineering Using Medical Imaging, Computational Modeling, Rapid Prototyping, Bioresorbable Scaffolds and Bone Marrow Aspirates

  • Chapter
Polymer Based Systems on Tissue Engineering, Replacement and Regeneration

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

The clinical goals for craniofacial skeletal reconstruction are multifaceted. Aesthetic and functional considerations often dictate the use of moldable implant materials. However, in most cases these three-dimensional shaped transplants must also provide immediate structural integrity. In addition, to minimize periimplant morbidity, the hostgraft interface should not produce an immunological or inflammatory response. Bone tissue engineering has emerged as a potential method to address the problems of autogenic bone grafting as well as allo- and xenoplastic materials. We report the three month results of a study in an immuno-competent model, the aim of which was to treat complex craniofacial defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammer B., Kunz C, Schramm A., de Roche R., Prein J. (1999) Repair of complex orbital fractures: technical Problems, state-of-the-art solutions and future perspectives. Ann Acad Med Singapore 28:687–91

    CAS  Google Scholar 

  2. Grant M.P., Iliff N.T., Manson P.N.(1997) Strategies for the treatment of enopththalmos. Clin Plast Surg 24:539–50

    CAS  Google Scholar 

  3. Eufinger H., Wehmöller E., Machtens L., Heuser A., Harders D.; (1995) Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data. J Craniomaxillofac Surg 23:175–81

    Article  CAS  Google Scholar 

  4. Hutmacher D., Kirsch A., Ackermann K.L., Huerzeler M.B. (1998) Matrix and Carrier Materials for Bone Growth Factors—State of the Art and Future Perspectives. In: Stark GB, Horch R, Tancos E (eds). Biological Matrices and Tissue Reconstruction, Springer Verlag, Heidelberg, Germany; p 197–206

    Chapter  Google Scholar 

  5. Deckard C. and Beamann J (1987). Advances in Selective Laser Sintering. In: Proceedings of the 14th Conference on Production Research Technology: University of Michigan, 447–452

    Google Scholar 

  6. Hoick D.E., Boyd E.M. Jr, Ng J., Mauffray R.O. (1999) Benefits of stereolithography in orbital reconstruction. Ophthalmology Jun;106:1214–8

    Google Scholar 

  7. Hoffmann J., Cornelius C.P., Groten M, Probster L., Pfannenberg C, Schwenzer N. (1998) Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg Mar; 101(3):604–12

    Article  CAS  Google Scholar 

  8. Hoffmann J., Cornelius C.P., Groten M., Probster L., Pfannenberg C, Schwenzer N. (1998) Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg Mar; 101(3):604–12

    Article  CAS  Google Scholar 

  9. Ono I., Tateshita T., Satou M., Sasaki T., Matsumoto M., Kodama N. (1997). Treatment of Large Complex Cranial Bone Defects by Using Hydroxyapatite Ceramic Implants. Plastic Reconstruction Surgery Aug;104(2):339–49

    Article  Google Scholar 

  10. Erickson D.M., Chance D., Schmitt S., Mathis J. (1999) An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg. Sep;57(9): 1040–3.

    Article  CAS  Google Scholar 

  11. Feinberg S.E., Hollister S.J., Halloran J.W., Chu T.M., Krebsbach P.H. (2001) Image-based biomimetic approach to reconstruction of the temporomandibular joint. Cells Tissues Organs.; 169(3):309–21.

    Article  CAS  Google Scholar 

  12. Hutmacher D.W. (2000) Polymeric Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials 21, pp 2529–2543

    Article  CAS  Google Scholar 

  13. Marra K.G., Campbell P.G., Dimilla P.A., Kumta P.N., Mooney M.P., Szem J.W., Weiss L.E. (1999) Novel three dimensional biodegradable scaffolds for bone tissue engineering. Mater Res Soc Symp Proc 550:155–160.

    Article  CAS  Google Scholar 

  14. Porter N.L., Pilliar R.M., Grynpas M.D. (2001) Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics. J Biomed Mater Res. Sep 15;56(4):504–l5.

    Article  CAS  Google Scholar 

  15. Hutmacher, D.W., Zein L, Teoh S.H., Ng K.W., Schantz J.T., Leahy J.C. Design and Fabrication of a 3D Scaffold for Tissue Engineering Bone, In: Synthetic Bioabsorbable Polymers for Implants, STP 1396, C. M. Agrawal, J. E. Parr and S.T. Lin, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000. pl52–167

    Google Scholar 

  16. Zein I, Hutmacher DW, Teoh SH, Tan KC (2002). Poly(e-caprolactone) Scaffolds Designed and Fabricated by Fused Deposition Modeling. Biomaterials 23, 1169–1185

    Article  CAS  Google Scholar 

  17. Hutmacher, DW., Schantz, JT., Zein, I., Ng, KW, Tan, KC, Teoh, S H. (2001) A Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling. J. Biomed. Mater Res. 55, 1–18. Schantz, JT., Hutmacher, DW., Ng, KW., Lim T.C., Chim H. Teoh, S H. (2002) Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant (in press)

    Article  Google Scholar 

  18. Hutmacher D.W., Lauer G. (2002). Grundlagen und aktuelle Anwendungen des Tissue Engineering in der Mund-, Kiefer,-und Gesichtschirurgie. Implantologie (in press)

    Google Scholar 

  19. Farkas L.G., Munro LR., Vanderburg B.M.(1976) Quantitative assessment of the morphology of the pig head as a model in surgical experimentation. Part 1: methods of measurement. Can J Comp Med 40:397

    CAS  Google Scholar 

  20. Hutmacher DW, Kirsch, A., Ackermann, KL, Huerzeler, MB. A Tissue Engineered Cell Occlusive Device for Hard Tissue Regeneration—A Preliminary Report. Int J Periodontics Restorative Dent 2001, 21:48–59

    Google Scholar 

  21. Dean D., Topham N.S., Rimnac C, Mikos A.G., Goldberg D.P., Jepsen K., Redtfeldt R., Liu Q., Pennington D., Ratcheson R. (1999). Osseointegration of preformed polymethylmethacrylate craniofacial prostheses coated with bone marrow-impregnated poly (DL-lactic-co-glycolic acid) foam. Plast Reconstr Surg. Sep;104(3):705–12.

    Article  CAS  Google Scholar 

  22. Vacanti CA., Vacanti J.P. (1997) Bone and cartilage reconstruction. (In: Lanza R., Langer R., Chick W. editors). Principles of tissue engineering. New York: R.G. Landes Co. p. 619–31.

    Google Scholar 

  23. de Roche R., Kuhn A., de Roche-Weber P., Gogolewski S., Printzen G., Geissmann A., De Jager M., Hammer B., Prein J., Rahn B.(1998) Experimental reconstruction of the sheep orbit with biodegradable implants. Mund Kiefer Gesichtschir May;2 Suppl 1:117–20

    Article  Google Scholar 

  24. Rozema F.R., Bos R.R., Pennings A.J., Jansen H.W. (1990) Poly(L-lactide) implants in repair of defects of the orbital floor: an animal study. J Oral Maxillofac Surg 48:1305–1309, discussion 1310

    Article  CAS  Google Scholar 

  25. Whang K., Healy K.E., Elenz D.R. et al. (1999). Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 5(1):8–16

    Article  Google Scholar 

  26. Fisher J. Vehof J., Dean D. et al. (2002). Soft and Hard Tissue Response to photocrosslinked poly (propylene fumarate) scaffolds in a rabbit model. J Biomed Mater. 59:547–556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hutmacher, D.W., Rohner, D., Yeow, V., Lee, S.T., Brentwood, A., Schantz, JT. (2002). Craniofacial Bone Tissue Engineering Using Medical Imaging, Computational Modeling, Rapid Prototyping, Bioresorbable Scaffolds and Bone Marrow Aspirates. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics