Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

The large number of orthopaedic procedures performed each year, including many performed arthroscopically, has led to great interest in injectable biodegradable materials for regeneration of bone and cartilage. A variety of materials have been developed for these applications, including ceramics, naturally-derived substances and synthetic polymers. These materials demonstrate overall biocompatibility and appropriate mechanical properties, as well as promote tissue formation, thus providing an important step towards minimally invasive orthopaedic procedures. This review provides a comparison of these materials based on mechanical properties, biocompatibility and regeneration efficacy. Advantages and disadvantages of each material are explained and design criteria for injectable biodegradable systems are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Academy of Orthopaedic Surgeons website, www.aaos.org.

  2. Peter S.J., Nolley JA., Widmer M.S., Merwin J.E., Yaszemski M.J., Yasko A.W., Engel P.S. and Mikos A.G. (1997) In vitro degradation of a pory(propylene fumarateyb-tricalcium phosphate composite orthopaedic scaffold, Tissue Eng. 3, 207–215.

    Article  CAS  Google Scholar 

  3. Thomson R.C., Wake M.C., Yaszemski M.J. and Mikos A.G. (1995) Biodegradable polymer scaffolds to regenerate organs, Adv. Polym. Sci. 122, 245–274.

    Article  CAS  Google Scholar 

  4. Yaszemski M.J., Payne R.G., Hayes W.C., Langer R. and Mikos A.G. (1996) In vitro degradation of a poly(propylene fumarate)-based composite material, Biomaterials 17, 2127–2130.

    Article  CAS  Google Scholar 

  5. Yaszemski M.J., Payne R.G., Hayes W.C., Langer R. and Mikos A.G. (1996) Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone, Biomaterials 17, 175–185.

    Article  CAS  Google Scholar 

  6. Frayssinet P., Gineste L., Conte P., Fages J. and Rouquet N. (1998) Short-term implantation of a DCPD-based calcium phosphate cement, Biomaterials 19, 971–977.

    Article  CAS  Google Scholar 

  7. Ikenaga M., Hardouin P., Lemaitre J., Andrianjatovo H. and Flautre B. (1998) Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: A comparison with porous biphasic calcium phosphate ceramics, J. Biomed. Mater. Res. 40, 139–144.

    Article  CAS  Google Scholar 

  8. Klein C.P.A.T., Dreissen A.A. and de Groot K. Biodegradation behavior of various calcium phosphate materials in bone tissue, J. Biomed. Mater. Res. 17, 769–784.

    Google Scholar 

  9. Daculsi G., LeGros R.Z., Nery E., Lynch K. and Kerebel B. (1989) Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization, J. Biomed. Mater. Res. 23, 883–894.

    Article  CAS  Google Scholar 

  10. Gauthier O., Bouler J.-M., Weiss P., Bosco J., Daculsi G. and Aguado E. (1999) Kinetic study of bone ingrowth and ceramic résorption associated with the implantation of different injectable calciumphosphate bone substitutes, J. Biomed. Mater. Res. 47, 28–35.

    Article  CAS  Google Scholar 

  11. Dupraz A., Delecrin J., Moreau A., Pilet P. and Passuti N. (1998) Long-term bone response to particulate injectable ceramic, J. Biomed. Mater. Res. 42, 368–375.

    Article  CAS  Google Scholar 

  12. Grimandi G., Weiss P., Millot F. and Daculsi G. (1998) In vitro evaluation of a new injectable calcium phosphate material, J. Biomed. Mater. Res. 39, 660–666.

    Article  CAS  Google Scholar 

  13. Gauthier O., Boix D., Grimandi G., Aguado E., Bouler J.-M., Weiss P. and Daculsi G. (1999) A new injectable phosphate biomaterial for immediate bone filling of extraction sockets: A preliminary study in dogs, J. Periodontol. 70, 375–383.

    Article  CAS  Google Scholar 

  14. Ohura K., Bonner M., Hardouin P., Lemaitre J., Pasquier G. and Flautre B. (1996) Resorption of, and bone formation from, new b-tricalcium phosphate-monocalcium phosphate cements: an in vivo study, J. Biomed. Mater. Res. 30, 193–200.

    Article  CAS  Google Scholar 

  15. Munting E., Mirtchi A.A. and Lemaitre J. (1993) Bone repair of defects filled with a phosphocalcic hydraulic cement: An in vivo study, J. Mater. Sci. Mater. Med. 4(3), 337–344.

    Article  CAS  Google Scholar 

  16. Miyamoto Y., Ishikawa K., Fukao H., Sawada M., Nagayama M., Kon M. and Asaoka K. (1995) In vivo setting behaviour of fast-setting calcium phosphate cement, Biomaterials 16, 855–860.

    Article  CAS  Google Scholar 

  17. Miyamoto Y., Ishikawa K. Takechi M., Toh T., Yoshida Y., Nagayama M., Kon M. and Asaoka K. (1997) Tissue response to fast-setting calcium phosphate cement in bone, J. Biomed. Mater. Res. 37, 457464.

    Article  Google Scholar 

  18. Miyamoto Y., Ishikawa K., Takechi M., Toh T., Yuasa T., Nagayama M. and Suzuki K. (1999) Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing, J. Biomed. Mater. Res. Appl. Biomater 48, 36–42.

    Article  CAS  Google Scholar 

  19. Ishikawa K. and Asaoka K. (1995) Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement, J. Biomed. Mater. Res. 29, 1537–1543.

    Article  CAS  Google Scholar 

  20. Driessens F.C.M., Boltong M.G., Bermudez O., Planeil J.A., Ginebra M.P. and Fernandez E. (1994) Effective formulations for the preparation of calcium phosphate bone cements, J. Mater. Sci Mater. Med. 5, 164–170.

    Article  CAS  Google Scholar 

  21. Anseth K.S., Shastri V.R. and Langer R. (1999) Photopolymerizable degradable polyanhydrides with osteocompatibility, Nature Biotech. 17, 156–159.

    Article  CAS  Google Scholar 

  22. Miyamoto Y., Ishikawa K., Takechi M., Toh T., Yuasa T., Nagayama M. and Suzuki K. (1998) Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases, Biomaterials 19, 707–715.

    Article  CAS  Google Scholar 

  23. Ishikawa K., Miyamoto Y., Kon M., Nagayama M. and Asaoka K. (1995) Non-decay type fast-setting calcium phosphate cement: Composite with sodium alginate, Biomaterials 16, 527–532.

    Article  CAS  Google Scholar 

  24. Ishikawa K., Miyamoto Y., Takechi M., Toh T., Kon M., Nagayama M. and Asaoka K. (1997) Nondecay type fast-setting calcium phosphate cement: Hydroxyapatite putty containing an increased amount of sodium alginate, J. Biomed. Mater. Res. 36, 393–399.

    Article  CAS  Google Scholar 

  25. Takechi M., Miyamoto Y., Ishikawa K., Toh T., Yuasa T., Nagayama M. and Suzuki K. (1998) Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation, Biomaterials 19, 2057–2063.

    Article  CAS  Google Scholar 

  26. Frankenburg E.P., Goldstein S.A., Bauer T.W., Harris S.A. and Poser R.D. (1998) Biomechanical and histological evaluation of a calcium phosphate cement, J. Bone J oint Surg. 80-A, 1112–1124.

    Google Scholar 

  27. Constanz B.R., Ison I.C., Fulmer MX, Poser R.D., Smith S.T., VanWagoner M., Ross J., Goldstein S.A., Jupiter J.B. and Rosenthal D.I. Skeletal repair by in situ formation of the mineral phase of bone, Science 267, 1796–1799.

    Google Scholar 

  28. Constanz B.R., Barr B.M., Ison I.C., Fulmer M.T., Baker J., McKinney L., Goodman S.B., Gunasekaren S., Delaney D.C., Ross J. and Poser R.D. (1998) Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites, J. Biomed. Mater. Res. Appl. Biomater. 43, 451461.

    Google Scholar 

  29. Goodman S.B., Bauer T.W., Carter D., Casteleyn P.P., Goldstein S.A., Kyle R.F., Larsson S., Stakewich C.J., Swiontkowski M.F., Tencer A.F., Yetkinler D.N. and Poser R.D. (1998) Norian SRS cement augmentation in hip fracture treatment, Clin. Orthop. Rel. Res. 348, 42–50.

    Google Scholar 

  30. Kopylov P., Jonsson K., Thorngren K.G., and Aspenberg P. (1996) Injectable calcium phosphate in the treatment of distal radial fractures, J. Hand Surg. 21, 768–771.

    CAS  Google Scholar 

  31. Food and Drug Administration (USA) website, www.fda.gov.

  32. Knaack D., Goad M.E.P., Aiolova M., Rey G, Tofighi A., Chakravarthy P. and Lee D.D. (1998) Resorbable calcium phosphate bone substitute, J. Biomed. Mater. Res. Appl. Biomater. 43, 399–409.

    Article  CAS  Google Scholar 

  33. Muggli D.S., Burkoth A.K. and Anseth K.S. (1999) Crosslinked polyanhydrides for use in orthopedic applications: Degradation behavior and mechanics, J. Biomed. Mater. Res. 46, 271–278.

    Article  CAS  Google Scholar 

  34. Muggli D.S., Burkoth A.K., Keyser S.A., Lee H.R. and Anseth K.S. (1998) Reaction behavior of biodegradable, photo-cross-linkable polyanhydrides, Macromolecules 31, 4120–4125.

    Article  CAS  Google Scholar 

  35. Shastri V.R., Marini R.P., Padera R.F., Kirchain S., Tarcha P. and Langer R. (1998) Osteocompatibility of photopolymerizable anhydride networks, Mat. Res. Soc. Symp. Proc. 530, 93–98.

    Article  CAS  Google Scholar 

  36. He S., Timmer M.D., Yaszemski M.J., Yasko A.W., Engel P.S. and Mikos AG. (2001) Synthesis of biodegradable poly(propylene fumarate) networks with polypropylene fumarate)-diacrylate monomers as cross-linking agents and characterization of their degradation products, Polymer 42, 1251–1260.

    Article  CAS  Google Scholar 

  37. Peter S.J., Miller M.J., Yaszemski M.J. and Mikos AG. (1997) Pol(propylene fumarate), in A.J. Domb, J. Kost and D.M. Wiseman (eds.), Handbook of Biodegradable Polymers, Harwood Academic, Amsterdam, pp. 87–97.

    Google Scholar 

  38. Frazier D.D., Lathi V.K., Gerhart T.N., Altobelli D.E. and Hayes W.G (1995) In vivo degradation of a poly(propylene fumarate) biodegradable, particulate composite bone cement, Mat. Res. Soc. Symp. Proc. 394, 15–19.

    Article  CAS  Google Scholar 

  39. Frazier D.D., Lathi V.K., Gerhart T.N. and Hayes W.C. (1997) Ex vivo degradation of a polypropylene glycol-fumarate) biodegradable particulate bone cement, J. Biomed. Mater. Res. 35, 383–389.

    Article  CAS  Google Scholar 

  40. Gresser J.D., Hsu S.-H., Nagaoka H., Lyons CM., Nieratko D.P., Wise D.L., Barabino G.A and Trantolo D.J. (1995) Analysis of a vinyl pyrrolidone/poly(propylene fumarate) resorbable bone cement, J. Biomed. Mater. Res. 29, 1241–1247.

    Article  CAS  Google Scholar 

  41. Yaszemski M.J., Payne R.G., Hayes W.G, Langer R.S., Aufdemorte T.B. and Mikos AG. (1995) The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold, Tissue Eng. 1, 41–52.

    Article  CAS  Google Scholar 

  42. Kharas G.B., Kamenetsky M., Simantirakis J., Beinlich K.C., Rizzo A-MX, Caywood G.A and Watson K. (1997) Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. J. Appl. Polym. Sci. 66, 1123–1137.

    Article  CAS  Google Scholar 

  43. Peter S.J., Kim P., Yasko AW., Yaszemski MJ. and Mikos AG. (1999) Crosslinking characteristics of an injectable poly(propylene fumarate)/b-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement, J. Biomed. Mater. Res. 44, 314–321.

    Article  CAS  Google Scholar 

  44. Peter S.J., Miller S.T., Zhu G., Yasko AW. and Mikos AG. (1998) In vivo degradation of a poly(propylene fumarateyb-tricalcium phosphate injectable composite scaffold, J. Biomed. Mater. Res. 41, 1–7.

    Article  CAS  Google Scholar 

  45. Peter S.J., Lu L., Kim D.J. and Mikos AG. (2000) Marrow stremai Osteoblast function on a poly(propylene fumarate)/b-tricalcium phosphate biodegradable orthopaedic composite, Biomaterials 21, 1207–1213.

    Article  CAS  Google Scholar 

  46. Payne R.G., Sivaram S.A, Babensee J.E., Yasko AW., Yaszemski M.J. and Mikos AG. (1998) Temporary encapsulation of rat marrow osteoblasts in gelatin microspheres, Tissue Eng. 4, 497.

    Google Scholar 

  47. Jo S., Engel P.S. and Mikos AG. (2000) Synthesis of poly(ethylene glycol)-tethered poly(propylene-cofumarate) and its modification with GRGD peptide, Polymer 41, 7595–7604.

    Article  CAS  Google Scholar 

  48. Peter S.J., Lu L., Kim D.J., Stamatas G.N., Miller MX, Yaszemski M.J. and Mikos AG. (2000) Effects of transforming growth factor-bl released from biodegradable polymer microparticles on marrow stremai osteoblasts cultured on poly(propylene fumarate) substrates, J. Biomed. Mater. Res. 50, 452–462.

    Article  CAS  Google Scholar 

  49. Lu L., Stamatas G.N. and Mikos AG. (2000) Controlled release of transforming growth factor-bl from biodegradable polymers, J. Biomed. Mater. Res. 50, 440–451.

    Article  CAS  Google Scholar 

  50. Cohen N.P., Foster R.J. and Mow V.C (1998) Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state, J. Orthop. Sports Phys. Ther. 28, 203–215.

    CAS  Google Scholar 

  51. Buckwalter J.A and Mankin H.J. (1998) Articular cartilage: Tissue design and chondrocyte-matrix interactions, AAOS Inst. Course Leci. 47, 477–486.

    CAS  Google Scholar 

  52. Athanasiou K.A., Rosenwasser M.P., Buckwalter J.A., Malinin TX and Mow V.C. (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage, J. Orthop. Res. 9, 330–340.

    Article  CAS  Google Scholar 

  53. Athanasiou K.A., Agarwal A. and Dzida F.J. (1994) Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage, J. Orthop. Res. 12, 340–349.

    Article  CAS  Google Scholar 

  54. Athanasiou K.A., Niederauer G.G. and Schenck R.C.J. (1995) Biomechanical topography of human ankle cartilage, Ann. Biomed. Engr. 123, 697–704.

    Article  Google Scholar 

  55. Courts R.D., Sah R.L. and Amiel D. (1997) Effect of growth factors on cartilage repair, AAOS Inst. Course Lect. 46, 487–494.

    Google Scholar 

  56. Buckwalter J.A. (1998) Articular cartilage: Injuries and potential for healing, J. Orthop. Sports Phys. Ther. 28, 192–202.

    CAS  Google Scholar 

  57. Solchaga L.A., Dennis J.E., Goldberg V.M. and Caplan AX (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage, J. Orthop. Res. 17, 205–213.

    Article  CAS  Google Scholar 

  58. Wakitani S., Goto T., Pineda S.J., Young R.G., Mansour J.M., Caplan AX and Goldberg V.M. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage, J. Bone Joint Surg. 76-A, 579–592.

    Google Scholar 

  59. Sims CD., Butler P.E.M., Cao Y.L., Casanova R., Randolph M.A., Black A., Vacanti CA. and Yaremchuk MJ. (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes, Plast. Reconstr. Surg. 101, 1580–1585.

    Article  CAS  Google Scholar 

  60. Hendrickson D.A., Nixon A.J., Grande D.A., Todhunter R.J., Minor R.M., Erb H. and Lust G. (1994) Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects, J. Orthop. Res. 12, 485–497.

    Article  CAS  Google Scholar 

  61. Paige K.T., Cima LG., Yaremchuk M.J., Vacanti J.P. and Vacanti CA. (1995) Injectable cartilage, Plast. Reconstr. Surg. 96, 1390–1400.

    Article  CAS  Google Scholar 

  62. Paige K.T., Cima L.G., Yaremchuk M.J., Schloo B.L., Vacanti J.P. and Vacanti CA. (1996) De novo cartilage generation using calcium alginate-chondrocyte constructs, Plast. Reconstr. Surg. 97, 168–180.

    Article  CAS  Google Scholar 

  63. Kulseng B., Skjak-Braek G., Ryan L., Andersson A., King A., Faxvaag A. and Espevik T. (1999) Transplantation of alginate microcapsules, Transplantation 67, 978–984.

    Article  CAS  Google Scholar 

  64. Sims CD., Butler P.E.M., Casanova R., Lee B.T., Randolph M.A., Lee W.P.A., Vacanti CA. and Yaremchuk MJ. (1996) Injectable cartilage using polyethylene oxide polymer substrates, Plast. Reconstr. Surg. 98, 843–850.

    Article  CAS  Google Scholar 

  65. Elisseeff J., Anseth K., Sims D., Mclntosh W., Randolph M. and Langer R. (1999) Transdermal photopolymerization for minimally invasive implantation, Proc. Natl. Acad. Sci. 96, 3104–3107.

    Article  CAS  Google Scholar 

  66. Suggs L.J., Payne R.G., Yaszemski M.J., Alemany L.B. and Mikos A.G. (1997) Synthesis and characterization of a block copolymer consisting of poly(propylene fumarate) and poly(ethylene glycol), Macromolecules 30, 4318–4323.

    Article  CAS  Google Scholar 

  67. Suggs L.J., Kao E.Y., Palombo L.L., Krishnan R.S., Widmer M.S. and Mikos A.G. (1998) Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels, J. Biomater. Sci Polym. Edn. 9, 653–666.

    Article  CAS  Google Scholar 

  68. Suggs L.J., Shive M.S., Garcia CA., Anderson J.M. and Mikos A.G. (1999) In vitro cytotoxicity and in vivo biocompatiblity of poly(propylene fumarate-co-ethylene glycol) hydrogels, J. Biomed. Mater. Res. 46, 22–32.

    Article  CAS  Google Scholar 

  69. Suggs L.J., Krishnan R.S., Garcia CA., Peter S.J., Anderson J.M. and Mikos A.G. (1998) In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels, J. Biomed. Mater. Res. 42, 312–320.

    Article  CAS  Google Scholar 

  70. Suggs L.J. and Mikos A.G. (1999) Development of poly(propylene fumarate-co-ethylene glycol) as an injectable carrier for endothelial cells, Cell Transplantation 8, 345–350.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Temenoff, J.S., Mikos, A.G. (2002). Injectable Biodegradable Materials for Orthopaedic Tissue Engineering. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics