Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 86))

Abstract

Bone defects that require skeletal reconstruction are a common problem facing physicians today. These defects often arise as a result of trauma, tumor resection, infection, or skeletal abnormalities. Traditional therapies to overcome these bone deficits include bone grafts, bone cement, and synthetic bone substitutes including plastics, ceramics, and metals. Each of these has limitations that preclude it from being an ideal bone replacement, indicating a need for bone tissue engineering. Tissue engineering seeks to regenerate this lost bone tissue by favorably utilizing the interactions between cells, growth factors, and scaffolding in novel bone tissue engineering constructs and therapies. Although different tissue engineering approaches may place emphasis on the cellular component, the involved growth factors, or implanted matrices, this review focuses on the use of cell transplantation to regenerate bone and enhance bone healing. By transplanting different cell populations including bone marrow cells, mesenchymal stem cells, osteoblasts, or genetically modified cells, researchers have shown the potential of these cell-based tissue engineering approaches to engineer new bone tissue. Because of this demonstrated ability, cell transplantation will undoubtedly play an important role in eventual tissue engineering therapies for treating bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer R. and Vacanti J.P. (1993) Tissue Engineering, Science 260, 920.

    Article  CAS  Google Scholar 

  2. Calandruccio R. (1981) Musculoskeletal System Research: Current and Future Research Needs, American Academy of Orthopaedic Surgeons, Chicago.

    Google Scholar 

  3. Bruder S.P. and Fox B.S. (1999) Tissue Engineering of Bone: Cell Based Strategies, Clin. Orthop. 376S, S68–S83.

    Google Scholar 

  4. Tihanksy C.E. and Fayemi W.M. (1996) Going for Broke: Orthopaedic Biomaterials for the Twenty-First Century, Medical Device Industry Report. Genesis Merchant Group Securities, San Fransisco.

    Google Scholar 

  5. Peter S.J., Miller S.T., Zhu G., Yasko A.W. and Mikos A.G. (1998) In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold, J. Biomed. Mater. Res. 41, 1–7.

    Article  CAS  Google Scholar 

  6. Burwell R.G. (1994) History of bone grafting and bone substitutes with special reference to osteogenic induction, in M.R. Urist and R.G. Burwell (eds.), Bone Grafts, Derivatives and Substitutes, Butterworth-Heinemann Ltd., Oxford, pp. 3–102.

    Google Scholar 

  7. Brown L.K.B. and Cruess R.L. (1982) Bone and Cartilage transplantation surgery, J. Bone Jt. Surg. Am. 64A, 270–279.

    Google Scholar 

  8. Enneking W.F., Eady J.L. and Burchardt H. (1980) Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects, J. Bone Jt. Surg. Am. 62A, 1039–58.

    Google Scholar 

  9. Younger E.M. and Chapman M.W. (1989) Morbidity at bone graft donor sites, J. Orthop. Trauma 3, 192–195.

    Article  CAS  Google Scholar 

  10. Strong D.M., Friedlaender G.E., Tomford W.W., Springfield D.S., Shives T.C., Burchardt H., Enneking W.F. and Mankin H.J. (1996) Immunologie responses in human recipients of osseous and osteochondral allografts, Clin. Orthop. 326, 107–114.

    Article  Google Scholar 

  11. Bostrom R.D. and Mikos A.G. (1997) Tissue Engineering of Bone, in A. Atala, D. Mooney, J.P. Vacanti and R. Langer (eds.), Synthetic biodegradable polymer scaffolds, Birkhauser, Boston, pp. 215–234.

    Chapter  Google Scholar 

  12. Spector M. (1992) Biomaterial failure, Orth. Clin. North Am. 23, 211–217.

    CAS  Google Scholar 

  13. Gibson L.J. (1985) The mechanical behavior of cancellous bone, J. Biomech. 18, 317–328.

    Article  CAS  Google Scholar 

  14. Black J. (1992) The inflammatory process, in J. Black (ed.) Biological performance of materials, Marcel Dekker, New York, pp. 125–145.

    Google Scholar 

  15. Joyce ME., Jingushi S., Scully S.P. and Bolander M.E. (1991) Role of growth factors in fracture healing, Prog. Clin. Biol. Res. 365, 391–416.

    CAS  Google Scholar 

  16. Wolff D., Goldberg V.M. and Stevenson S. (1994) Histomorphometric analysis of the repair of a segmental diaphyseal defect with ceramic and titanium fibermetal implants: Effects of bone marrow, J. Orthop. Res. 12 439–446.

    Article  CAS  Google Scholar 

  17. Holmes R.E., Bucholz R.W. and Mooney V. (1987) Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: A histometric study, J. Orthop. Res. 5, 114–121.

    Article  CAS  Google Scholar 

  18. Johnson KD., Frierson K.E., Keller T.S., Cook C, Scheinberg R., Zerwekh J., Meyers L. and Sciadini M.F. (1996) Porous ceramics as bone graft substitutes in long bone defects: A biomechancal, histological, and radiographic analysis, J Orthop. Res. 14, 351–369.

    Article  CAS  Google Scholar 

  19. Hutmacher D.W. (2000) Scaffolds in tissue engineering bone and cartilage, Biomaterials 21, 2529–2543.

    Article  CAS  Google Scholar 

  20. Marra K.G., Szem J.W., Kumta P.N., DiMilla P.A. and Weiss L.E. (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mat. Res. 47(3), 324–335.

    Article  CAS  Google Scholar 

  21. Zhang R. and Ma P.X. (1999) Porous poly(L-actic acid)/apatite composites created by biomimetic process, J. Biomed. Mater. Res. 45(4), 285–293.

    Article  CAS  Google Scholar 

  22. Guilelmin G., Patat J.L., Fournie J. and Chetail M. (1987) The use of coral as a bone graft substitute, J. Biomed. Mater. Res. 21, 557–567.

    Article  Google Scholar 

  23. Lane J.M., Tomin E. and Bostrum M.P.G. (1999) Biosynthetic bone grafting, Clin. Orthop. 367S, S107–S117.

    Google Scholar 

  24. Boden S.D. (1999) Bioactive factors for bone tissue engineering, Clin. Orthop. 367S, S84–S94.

    Google Scholar 

  25. Inoue K., Ohgushi H., Yoshikawa T., Okumura M., Sempuku T., Tamai S. and Dohi Y. (1997) The effect of aging on bone formation in porous hydroxyapatite: Biochemical and histological analysis, J. Bone Min. Res. 12, 989–994.

    Article  CAS  Google Scholar 

  26. Quarto R., Thomas D. and Liang T. (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity, Calcif. Tissue Int. 56, 123–129.

    Article  CAS  Google Scholar 

  27. Burwell R. (1964) Studies in the transplantation of bone VII. The fresh composite homograft-autograft of cancellous bone: An analysis of factors leading to Osteogenesis in marrow transplants and in marrow-containing bone grafts,. Bone Joint Surg. 46B, 110–140.

    Google Scholar 

  28. Owen M. (1985) Lineage of osteogenic cells and their relationship to the stromal system, in W.J. Peck (ed.) Bone and Mineral (3rd edition), Elsevier, Amsterdam, pp. 1–25.

    Google Scholar 

  29. Grundel R.E., Chapman M.W., Yee T. and Moore D.C. (1991) Autogenic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna, Clin. Orthop. 266, 244–258.

    Google Scholar 

  30. Ohgushi H., Goldberg V.M. and Caplan A. (1989) Repair of bone defects with marrow cells and porous ceramics, Acta Orthop. Scand. 60, 334–339.

    Article  CAS  Google Scholar 

  31. Paley D., Young M.C., Wiley A.M., Fornasier V.L. and Jackson R.W. (1986) Percutaneous bone marrow grafting of fractures and bony defects: An experimental study in rabbits, Clin. Orthop. 208, 300–312.

    Google Scholar 

  32. Tiedeman J.J., Connolly J.F., Strates B.S. and lippiello L. (1991) Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs, Clin. Orthop. 268, 294–302.

    Google Scholar 

  33. Werntz J.R. (1996) Qualitative and quantitative analysis of orthotopic bone regeneration by marrow, J. Orthop. Res. 14, 85–93.

    Article  CAS  Google Scholar 

  34. Connolly J., Guse R., Lippiello L. and Dehne R. (1989) Development of an osteogenic bone-marrow preparation, J. Bone Joint Surg. 71A, 684–691.

    Google Scholar 

  35. Connolly J., Guse R., Tiedeman J. and Dehne R. (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions, Clin. Orthop. 266, 259–270.

    Google Scholar 

  36. Lane J.M. (1999) Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair, Clin. Orthop. 361, 216–227.

    Article  Google Scholar 

  37. Tomin E., Lane J., Nakamichi K., Hsu J., Schneider K. and Weiland A. (1999) Performance of molded vascularized bone grafts induced by BMP-2 and marrow in a rat segmentai defect model, Trans. Orthop. Res. Soc. 24, 621.

    Google Scholar 

  38. Bruder S.P., Jaiswal N. and Haynesworth S.E. (1997) Growth kinetics, self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J. Cell. Biochem. 64, 278–294.

    Article  CAS  Google Scholar 

  39. Haynesworth S.E., Goshima J., Goldberg V.M. and Caplan A.I. (1992) Characterization of cells with osteogenic potentiall from human marrow, Bone 13, 69–80.

    Article  CAS  Google Scholar 

  40. Haynesworth S.E., Goldberg V.M. and Caplan A.I. (1994) Diminution of the number of mesenchymal stem cells as a cause for skeletal aging, in J.A. Buckwater, V.M. Goldberg and S.L.Y. Woo (eds.) Musculoskeletal soft-tissue aging: Impact on mobility, Am Acad Ortho Surg, Chicago, pp. 79–87.

    Google Scholar 

  41. Kadiyala S., Young R.G., Thiede M.A and Bruder S.P. (1997) Culture-expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro, Cell Transplant. 6, 125–134.

    Article  CAS  Google Scholar 

  42. Lennon D.P., Haynesworth S.E., Bruder S.P., Jaiswal N. and Caplan A.I. (1996) Development of a serum screen for mesenchymal progenitor cells from bone marrow, In Vitro Cell Dev. Biol. 32, 602–611.

    Article  Google Scholar 

  43. Maniatopoulos C, Sodek J. and Melcher A.H. (1988) Bone formation in vitro by stromal cells obtained from marrow of young adult rats, Cell Tissue Res. 254, 317–330.

    Article  CAS  Google Scholar 

  44. Pittenger M.F., Mackay AM., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A, Simonetti D.W., Craig S. and Marshak D.R. (1999) Multi-lineage potential of adult human mesenchymal stem cells, Science 284, 143–147.

    Article  CAS  Google Scholar 

  45. Jaiswal N., Haynesworth S.E., Caplan AI. and Bruder S.P. (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro, J. Cell Biochem. 64, 295–312.

    Article  CAS  Google Scholar 

  46. Goshima J., Goldberg V.M. and Caplan AX (1991) The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks, Clin. Orthop. 262, 298–311.

    Google Scholar 

  47. Kadiyala S., Jaiswal N. and Bruder S.P. (1997) Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect, Tissue Eng. 3, 173–185.

    Article  Google Scholar 

  48. Bruder S.P., Kraus K.H., Goldberg V.M. and Kadiyala S. (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects, J. Bone Joint Surg. 80A, 985–996.

    Google Scholar 

  49. Richards M., Huibregtse B.A., Caplan AX, Goulet J.A. and Goldstein S.A. (1999) Marrow-derived progenitor cell injections enhance new bone formation during distraction, J. Clin. Orthop. Res. 17, 900–908.

    CAS  Google Scholar 

  50. Bruder S.P., Kurth AA, Shea M., Hayes W.C., Jaiswal N. and Kadiyala S. (1998) Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells, J. Orthop. Res. 16, 155–162.

    Article  CAS  Google Scholar 

  51. Yoshikawa T., Ohgushi H. and Tamai S. (1996) Immediate bone forming capability of prefabricated osteogenic hydroxyapatite, J. Biomed. Mater. Res. 32, 481–492.

    Article  CAS  Google Scholar 

  52. Ishaug-Riley S.L., Crane G.M., Gurlek A, Miller M.J., Yasko AW., Yaszemski M.J. and Mikos AG. (1997) Ectopic bone formation by marrow stromal Osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery, J. Biomed. Mater. Res. 36, 1–8.

    Article  CAS  Google Scholar 

  53. Breitbart AS., Grande D.A, Kessler R., Ryaby J.T., Fitzsimmons RJ. and Grant R.T. (1998) Tissue engineered bone repair of calvarial defects using cultured periosteal cells, Plastic and Reconstructive Surgery 101, 567–574.

    Article  CAS  Google Scholar 

  54. Yoshikawa T., Ohgushi H., Nakajima H., Yamada E., Ichijima K., Tamai S. and Ohta T. (2000) In vivo osteogenic durability of cultured bone in porous ceramics, Transplantation 69, 128–134.

    Article  CAS  Google Scholar 

  55. Ohgushi H. and Caplan AI. (1999) Stem cell technology and bioceramics: From cell to gene therapy, J. Biomed. Mater. Res. (Appl. Biomaterials) 48, 913–927.

    Article  CAS  Google Scholar 

  56. Goldstein AS., Juarez T.M., Helmke CD., Gustin M.C. and Mikos AG. (2001) Effect of Convection on Osteoblastic Cell Growth and Function in Biodegradable Polymer Foam Scaffolds, Biomaterials 22, 1279–1288.

    Article  CAS  Google Scholar 

  57. Behravesh E., Engel P.S., Yasko AW. and Mikos AG. (1999) Synthetic Biodegradable Polymers for Orthopaedic Applications, Clin. Orthop. 367S, S118–S125.

    Google Scholar 

  58. Iieberman J.R., Le L.Q., Wu L., Finerman G.A, Berk A, Witte O.N. and Stevenson S. (1998) Regional gene therapy with a BMP-2 producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents., J. Orthop. Res. 16, 330–339.

    Article  Google Scholar 

  59. Gazit D., Turgeman G., Kelley P., Wang E., Jalenak M., Zilberman Y. and Moutsatsos I. Engineered pluripotent mesenchymal cells integrate and differentiate regenerating bone: a novel cell-mediated gene therapy, J. Gene Med. 1(2), 121–133.

    Google Scholar 

  60. Krebsbach P.H., Gu K., Franceschi R.T. and Rutherford R.B. (2000) Gene therapy-directed Osteogenesis: BMP-7-transduced human fibroblasts from bone in vivo. Human Gene Therapy 11, 1201–1210.

    Article  CAS  Google Scholar 

  61. Boden S.D., Titus L., Hair G., Liu Y., Viggeswarapu M., Nanes M.S. and Baranowski C. (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoconductive protein (LMP-1), Spine 23, 2486–2492.

    Article  CAS  Google Scholar 

  62. Boden S.D., Liu Y., Hair G.A, Helms J.A, Hu D., Racine M., Nanes M.S. and Titus L. (1998) LMP-1, a LIM-domain protein, mediates BMP-6 effects on bone formation, Endocrinology 139, 5125–5134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bancroft, G.N., Mikos, A.G. (2002). Bone Tissue Engineering by Cell Transplantation. In: Reis, R.L., Cohn, D. (eds) Polymer Based Systems on Tissue Engineering, Replacement and Regeneration. NATO Science Series, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0305-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0305-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1001-9

  • Online ISBN: 978-94-010-0305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics