Dependence of Magnetic Properties on Composition of Nanocrystalline Fe-M-B-Cu (M: Zr, Nb, Mo, Ti, Ta) Alloys

  • M. Kopcewicz
  • A. Grabias
  • B. Idzikowski
  • D. L. Williamson
Conference paper


The specialized rf-Mössbauer technique is used to elucidate the magnetic properties of NANOPERM-type nanocrystalline alloys. The influence of alloy composition on the soft magnetic properties is studied for the Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo, Zr) alloys. The rf-Mössbauer experiments allowed us to distinguish magnetically soft nanoclusters from magnetically harder microcrystalline phases. The measurements performed as a function of the rf field intensity allowed the determination of the distribution of anisotropy fields related to the size distribution of bcc nanoclusters. Smaller anisotropy fields in the nanocrystalline phase were found in Nb-, Zr-, and Mo-containing alloys as compared with the alloys which contain Ti and Ta. The Mössbauer measurements were supplemented by X-ray diffraction determination of the size of nanocrystalline grains.


Amorphous Alloy Magnetic Anisotropy Hyperfine Field Conversion Electron Mossbauer Spectroscopy Anisotropy Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Makino, A., Hanai, T., Inoue, A. and Masumoto, T., Mater. Sci. Eng. A 179/180 (1994), 552.CrossRefGoogle Scholar
  2. 2.
    Yoshizawa, Y., Oguma, S. and Yamauchi, K., J. Appl. Phys. 64 (1988), 6044.CrossRefGoogle Scholar
  3. 3.
    Suzuki, K., Makino, A., Inoue, A. and Masumoto, T., J. Appl. Phys. 74 (1993), 3316.CrossRefGoogle Scholar
  4. 4.
    Makino, A., Inoue, A. and Masumoto, T., Mat. Res. Soc. Symp. Proc. 577 (1999), 457.CrossRefGoogle Scholar
  5. 5.
    Herzer, G., Mater. Sci. Eng. A 133 (1991), 1.CrossRefGoogle Scholar
  6. 6.
    Pundt, A., Hampel, G. and Hesse, J., Z. Phys. B 87 (1992), 65.CrossRefGoogle Scholar
  7. 7.
    Zhou, X. Z., Morrish, A. H., Naugle, D. G. and Pan, R., J. Appl. Phys. 73 (1993), 6597.CrossRefGoogle Scholar
  8. 8.
    Miglierini, M., J. Phys.: Condens. Matter. 6 (1994), 1431.CrossRefGoogle Scholar
  9. 9.
    Duhaj, P., Matko, I., Svec, P., Sitek, J. and Janickovic, D., Mater. Sci. Eng. B 39 (1996), 208.CrossRefGoogle Scholar
  10. 10.
    Gorria, P., Garitaonandia, J. S. and Barandiaran, J. M., J. Phys.: Condens. Matter. 8 (1996), 5925.CrossRefGoogle Scholar
  11. 11.
    Kopcewicz, M., Grabias, A. and Williamson, D. L., J. Appl. Phys. 82 (1997), 1747.CrossRefGoogle Scholar
  12. 12.
    Miglierini, M., Kopcewicz, M., Idzikowski, B., Horváth, Z. E., Grabias, A., Škorvánek, I., Dluzewski, P. and Daróczi, Cs. S., J. Appl. Phys. 85 (1999), 1014.CrossRefGoogle Scholar
  13. 13.
    Kopcewicz, M., Grabias, A. and Idzikowski, B., Mat. Res. Soc. Symp. Proc. 577 (1999), 487.CrossRefGoogle Scholar
  14. 14.
    Kopcewicz, M., Grabias, A., Nowicki, P. and Williamson, D. L., J. Appl. Phys. 79 (1996), 993.CrossRefGoogle Scholar
  15. 15.
    Pfeiffer, L., In: I. J. Gruvermann, (ed.), Mössbauer Effect Methodology, Vol. 7, Plenum, New York, 1972, p. 263.Google Scholar
  16. 16.
    Kopcewicz, M., Structural Chem. 2 (1991), 313.Google Scholar
  17. 17.
    Kopcewicz, M., Jagielski, J., Graf, T., Fricke, M. and Hesse, J., Hyp. Interact. 94 (1994), 2223.CrossRefGoogle Scholar
  18. 18.
    Kopcewicz, M. and Grabias, A., J. Appl. Phys. 80 (1996), 3422.CrossRefGoogle Scholar
  19. 19.
    Kopcewicz, M., Grabias, A., Škorvánek, I., J. Appl. Phys. 83 (1998), 935.CrossRefGoogle Scholar
  20. 20.
    Hesse, J. and Rubartsch, A., J. Phys. E 7(1974), 526.CrossRefGoogle Scholar
  21. 21.
    LeCaer, G. and Dubois, J. M., J. Phys. E 12 (1979), 1083.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • M. Kopcewicz
    • 1
  • A. Grabias
    • 1
  • B. Idzikowski
    • 2
  • D. L. Williamson
    • 3
  1. 1.Institute of Electronic Materials TechnologyWarsawPoland
  2. 2.Institute of Molecular PhysicsPolish Academy of SciencesPoznanPoland
  3. 3.Physics DepartmentColorado School of MinesGoldenUSA

Personalised recommendations