Self-Ordered Growth and Spectroscopy of Nonplanar Quantum Wires and Quantum Dots

  • Eli Kapon
Part of the NATO Science Series book series (NAII, volume 90)


Semiconductor quantum nanostructures are useful both for studying the physics of lowdimensional electronic systems and for exploring novel device applications utilizing quantum confinement. Recently, this field has been increasingly driven by the development of experimental techniques for preparing such systems with controlled potential distributions and without compromising the interface quality. These techniques allow the study of the electronic structure inherent to low-dimensional systems and contribute to the development of better theoretical models for their analysis. In the case of two-dimensional (2D) quantum well (QW) systems, epitaxial growth techniques such as molecular beam epitaxy (MBE) and organometallic chemical vapor deposition (OMCVD) have been instrumental in providing high quality structures for experimental studies, since the 2D growth modes utilized with these techniques readily translate into 2D heterostructure geometries. The fabrication of 1D quantum wire (QWR) and OD quantum dot (QD) heterostructures, on the other hand, is more demanding and requires epitaxial growth techniques in which the adatom surface fluxes are controlled in the plane of the substrate. This lateral flux control is necessary for forming lateral heterostructures whose parameters vary on a nanometer scale in order to produce the desired lateral quantum confinement effects.


Quantum Well Physical Review Letter Confinement Energy AlGaAs Barrier Epitaxial Growth Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wescheider, W., Pfeiffer, L.N., Dignam, M.M., Pinczuk, A., West, K.W., McCall, S.L., and Hull, R.(1993). Physical Review Letters 71, 4071–4074.CrossRefGoogle Scholar
  2. 2.
    Goldstein, L., Glas, F., Marzin, J.Y., Charasse, M.N., and Le-Roux, G. (1985). Applied Physics Letters 47, 1099–1101.CrossRefGoogle Scholar
  3. 3.
    Kapon, E., Tamargo, M.C., and Hwang, D.M. (1987). Applied Physics Letters 50, 347–349.CrossRefGoogle Scholar
  4. 4.
    Kapon, E., Hwang, D.M., and Bhat, R. (1989). Physical Review Letters. 63, 430–433.CrossRefGoogle Scholar
  5. 5.
    Biasiol, G. and Kapon, E. (1998). Physical Review Letters 81, 2962–2965.CrossRefGoogle Scholar
  6. 6.
    Hartmann, A., Ducommun, Y., Leifer, K., and Kapon, E. (1999). Journal of Physics: Condensed Matter 11, 5901–5915.CrossRefGoogle Scholar
  7. 7.
    Biasiol, G., Ducommun, Y., Rudra, A., Gustafsson, A., and Kapon, E. (1998). Physical Review B 57, R9416–R9419.CrossRefGoogle Scholar
  8. 8.
    Constantin, C., Martinet, E., Lelarge, F., Leifer, K., Rudra, A., and Kapon, E. (2000). Journal of Applied Physics 88, 141–147.CrossRefGoogle Scholar
  9. 9.
    Gustafsson, A., Reinhardt, F., Biasiol., and Kapon, E. (1995). Applied Physics Letters 67, 3673–3675.CrossRefGoogle Scholar
  10. 10.
    Kapon, E., Reinhardt, F., Biasiol, G., Gustafsson, A. (1998). Applied Surface Science 123/124, 674–681.CrossRefGoogle Scholar
  11. 11.
    Vouilloz, F., Oberli, D.Y., Dupertuis, M.A., Gustafsson, A., Reinhardt, F., and Kapon, E. (1997). Physical Review Letters 78, 1580–1583; Vouilloz, F., Oberli, D.Y., Dupertuis, M.A., Gustafsson, A., Reinhardt, F., and Kapon, E., Physical Review B 57, 12378-12387.CrossRefGoogle Scholar
  12. 12.
    Rossi, F., and Molinari, E. (1996). Physical Review Letters 76, 3642–3645; and references therein.CrossRefGoogle Scholar
  13. 13.
    Martinet, E., Dupertuis, M.A., Reinhardt, F., Biasiol, G., Kapon, E., Stier, O., Grundmann, M., and Bimberg, D. (2000). Physical Review B 61, 4488–4491.CrossRefGoogle Scholar
  14. 14.
    Oberli, D.Y., Vouilloz, F., Dupertuis, M.A., Fall C.J., and Kapon, E. (1995). Il Nuovo Cimento 17D, 1641–1650.CrossRefGoogle Scholar
  15. 15.
    Constantin, C., Martinet, E., Rudra, A., and Kapon, E. (1999). Physical Review B 59, R7809–R7812.CrossRefGoogle Scholar
  16. 16.
    Gammon, D.. Snow, E.S., Shanabrook, B.V., Katzer, B.V., and Park, D.S. (1996). Science 273 87–90.CrossRefGoogle Scholar
  17. 17.
    Hasen, J, n Pfeiffer, L.N., Pinczuk, A., West, K., and Dennis, B.S. ((1997). Nature 390, 54–57.CrossRefGoogle Scholar
  18. 18.
    Vouilloz, F., Oberli, D.Y., Dwir, B., Reinhardt, F. and Kapon, E. (1998). Solid State Communications 108, 945–948.CrossRefGoogle Scholar
  19. 19.
    Rashba, T., and Gurgenishvili, G.E. (1962). Soviet Physics: Solid State 4, 759.Google Scholar
  20. 20.
    Oberli, D.Y., Dupertuis, M.A., Reinhardt, F., and Kapon, E. (1999). Physical Review B 59, 2910–2914.CrossRefGoogle Scholar
  21. 21.
    Citrin, D.S. (1992). Physical Review Letters 69, 3393–3396.CrossRefGoogle Scholar
  22. 22.
    Bellessa, J., Voliotis, V., Grousson, R., Wang, X.L., Ogura, M., and Matsuhata, H. (1998). Physical Review B 58, 9933–9940.CrossRefGoogle Scholar
  23. 23.
    Hartmann, A., Ducommun, Y., Kapon, E., Hohenester, U., and Molinari, E. (2000). Physical Review Letters 84, 5648.CrossRefGoogle Scholar
  24. 24.
    Kaufman, D., Berk, Y., Dwir, B., Rudra, A., Palevski, A. and Kapon, E. (1999). Physical Review B 59R10433–10436.Google Scholar
  25. 25.
    Landauer, R. (1956). IBM journal of Research and Development 1, 223.CrossRefGoogle Scholar
  26. 26.
    van Wees, V.J., van Houten, H, Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., and Foxon, C.T. (1988). Physical Review Letters 60, 848–851; Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., and Jones, G.A.C. ( 1988). Journal of Physics C 21, L209-211.CrossRefGoogle Scholar
  27. 27.
    Kaufman, Dwir, B., Rudra, A., Utke, I., Palevski, A., and Kapon, E. (2000). Physica E 7, 756–759.CrossRefGoogle Scholar
  28. 28.
    Weman, H., Martinet, E., Rudra, A., and Kapon, E. (1998). Applied Physics Letters 63, 2959–2961.CrossRefGoogle Scholar
  29. 29.
    Kapon, E. (1993). OPTOELECTRONICS-Devices and Technologies-8, 429–460.Google Scholar
  30. 30.
    Sirigu, L., Oberli, D.Y., Degiorgi, L., Rudra, A., and Kapon, E. (2000). Physical Review B 61, R10575–R10578.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Eli Kapon
    • 1
  1. 1.Laboratory of Physics of Nanostructures Institute of Quantum Electronics and PhotonicsSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations