Skip to main content

Self-Organized Semiconductor Quantum Islands in A Semiconducting Matrix

  • Chapter
  • 774 Accesses

Part of the book series: NATO Science Series ((NAII,volume 90))

Abstract

Reaching and perusing the quantum limit in conventional devices like memory units is the goal of the current research to allow a further increase in device performance while reducing the device size. While lithographic processes are still widely used for device patterning, these techniques result in corrugated surfaces, inducing undesired surface recombination centers. Thus they are not suitable for high quality, high density quasi-zero dimensional systems with lateral dimensions typically below 30 nm. A self-organization of quantum dots is the alternative. The self-organization of colloidal chalcogenide quantum dots (QD) from liquid solutions or in a glass melt is known since the 1930-ies and has lead to applications like optical absorbers and filters, as the average size of the quantum dot ensemble determines the absorption edge. While a very high density and homogeneity of QD sizes can be achieved, the matrix these QDs are embedded in is generally non-conducting and does not allow to build electrically driven devices. In recent years epitaxial techniques have been developed that allow the embedding of QDs in a semiconducting matrix. These QDs are induced by driving forces that are determined e.g. by the interface energy and the lattice mismatch between the QD and the matrix-material, a perfect crystallinity provided. On the example of CdSe islands embedded in ZnSe we shall discuss the outstanding physical properties of such quasi zero dimensional island structures but also the difficulties in their fabrication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bimberg, M. Grundmann, N. N. Ledentsov; Quantum Dot Heterostructures: John Wiley and Sons, Chichester (1999)

    Google Scholar 

  2. S. Luryi, J. Xu and A. Zaslavsky; ”Future Trends in Microelectronics-The Road Ahead”, John Wiley&Sons, New York 1999

    Google Scholar 

  3. M.A. Herman, H. Sitter; ”Molecular Beam Epitaxy”, Springer Series in Material Science Vol. 7, editor M.B. Panish, Berlin (1989)

    Google Scholar 

  4. T. Yao, ”M BE of II-VI compounds” in ” The Technology and Physics of Molecular Beam Epitaxy”; editor E.H.C. Parker, Plenum Press, New York (1995)

    Google Scholar 

  5. Epitaxial Electronic Materials”, editors A. Baldereschi, C. Paorici; Proc. Winter School on Technol., Charact. and Prop. Epitax. Electron. Mater., Miramare (1986), World Scientific Singapore (1988)

    Google Scholar 

  6. M. Asada, Y. Miyamoto, Y. Suematsu; IEEE J. Quantum Electr. 22 (1986) 1915

    Article  Google Scholar 

  7. e.g. chapter Quantum dot lasers in: Proc. Int. Conf. on Semicond. Quantum Dots (QD2000), Munich, Germany 2000; phys. stat. sol. 224 (2001) 787

    Google Scholar 

  8. K. Hinzer, M. Bayer, J. P. McCaffrey, P. Hawrylak, M. Korkusinski, O. Stern, Z. R. Wasiliewski, S. Fafard, and A. Forchel; phys. stat. sol. (b) 224 (2001) 385

    Article  CAS  Google Scholar 

  9. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L. W. Molenkamp; Nature 402 (1999) 787

    Article  Google Scholar 

  10. I. Malajovich, J. J. Berry, N. Samarth, D. D. Awschalom; Nature 411 (2001) 770

    Article  CAS  Google Scholar 

  11. Eli Kapon et al., this volume

    Google Scholar 

  12. S. Guha, A. Mudhukar and K.C. Rajkumar, Appl. Phys. lett. 57 (1990) 2110

    Article  CAS  Google Scholar 

  13. J.M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre and O. Vatel, Appl. Phys. Lett 64 (1994) 196

    Article  CAS  Google Scholar 

  14. W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson, R. Wallenberg; J. Prog. Crystal Growth Charact. Mater. 33 (1997) 423

    Article  Google Scholar 

  15. M. Zinke-Allmang, L.C. Feldmann and M.H. Grabow, Surf. Sci. Reports 16 (1992) 377

    Article  CAS  Google Scholar 

  16. M. Rabe, M. Lowisch, F. Henneberger; J. Cryst. Growth 184/185 (1998) 248

    CAS  Google Scholar 

  17. N. Carlsson, W. Seifert, a. Petersson, P. Castrillo, M.-E. Pistol and L. Samuelson, Appl. Phys. Lett. 65 (1994) 3093

    Article  CAS  Google Scholar 

  18. K. Georgsson, N. Carlsson, L. Samuelson, W. Seifert, and L.R. Wallenberg; Appl. Phys. Lett. 67, 2981 (1995) and contributions in this volume

    Article  CAS  Google Scholar 

  19. M.W. Dashill, U. Denker, C. Müller, G. Costantini, C. Manzano, K. Kern, O.G. Schmidt; Appl. Phys. Lett. 80 (2002) 1279

    Article  Google Scholar 

  20. O. G. Schmidt, U. Denker, M. Dashiell, N. Y. Jin-Phillipp, K. Eborl, R. Schreiner, H. Grbeldinger, H. Schweizer, S. Christiansen and F. Ernst; Materials Science and Engineering B 89 (2002) 101

    Article  Google Scholar 

  21. S. H. Xin, P. D. Wang, Aie Yin, C. Kim, M. Dobrowolska, J. L. Merz, J. K. Furdyna; Appl. Phys. Lett. 69 (1996) 3884

    Article  CAS  Google Scholar 

  22. F. Flack, N. Samarth, V. Nikitin, P.A. Crowell, J. Shi, J. Levy, D.D. Awshalom; Phys. Rev. B 54 (1996) R17312

    Article  Google Scholar 

  23. E. Kurtz, J. Shen, M. Schmidt, M. Grün, S.K. Hong, D. Litvinov, D. Gerthsen, Y. Oka, T. Yao, C. Klingshirn; Thin Solid Films 367 (2000) 68

    Article  CAS  Google Scholar 

  24. Z. Zhu, H. Yoshihara, K. Takebayashi, T. Yao; Appl. Phys. Lett. 63 (1993) 1678

    Article  CAS  Google Scholar 

  25. D. Litvinov, A. Rosenauer, D. Gerthsen, N. N. Ledentsov; Phys. Rev. B 61 (2000) 16819

    Article  CAS  Google Scholar 

  26. E. Kurtz, M. Schmidt, D. Litvinov, B. Dal Don, R. Dianoux, Hui Zhao, H. Kalt, A. Rosenauer, D. Gerthsen and C. Klingshirn; phys. stat. sol. (b) 229 (2002) 519

    Article  CAS  Google Scholar 

  27. D. Schikora, S. Schwedhelm, D. J. As, and K. Lischka, D. Litvinov, A. Rosenauer, and D. Gerthsen, M. Strassburg, A. Hoffmann, and D. Bimberg; Appl. Phys. Lett. 76 (2000) 418

    Article  CAS  Google Scholar 

  28. M. Strassburg, Th. Denizou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Livtinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka und D. Schikora; Appl. Phys. Lett. 76 (2000) 685

    Article  CAS  Google Scholar 

  29. A. Rosenauer and D. Gerthsen; Advances in Imaging and Electron Physics, Vol. 107 (1999) 121–230

    Article  Google Scholar 

  30. J.M. Hartmann, G. Feuillet, M. Charleux, H. Mariette; J. Appl. Phys. 79 (1996) 3035

    Article  CAS  Google Scholar 

  31. N. Peranio, A. Rosenauer, D. Gerthsen, S. V. Sorokin, I. V. Sedova, S. V. Ivanov; Phys. Rev. B 61 (2000) 16015

    Article  CAS  Google Scholar 

  32. H. Mariette, L. Bcsombes, K. Kheng, L. Marsal: 4th Int. Workshop MBE and VPE Growth Phys. Technol. (01-MBE& VPE-GPT) Warsaw, Poland (2001), to appear in Thin Solid Films (2002)

    Google Scholar 

  33. G. Bacher, R. Weigand, J. Seufert, V.D. Kulakovskii, N.A. Gippius, A. Forchel, K. Leonardi, D. Hommel; Phys. Rev. Lett. 83 (1999) 4417

    Article  CAS  Google Scholar 

  34. F. Gindele, K. Hild, W. Langbein, U. Woggon, K. Leonardi, D. Hommel, T. Kummell, G. Bacher, A. Forchel; J. Lumin. 83-84 (1999) 305

    Article  Google Scholar 

  35. T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, F. Henneberger; Phys. Rev. Lett. 86 (2001) 3172

    Article  CAS  Google Scholar 

  36. G. Von Freymann, E. Kurtz, C. Klingshirn, M. Wegener; Appl. Phys. Lett. 77 (2000) 394

    Article  Google Scholar 

  37. S. Wachter, B. Dal Don, M. Schmidt, M. Baldauf, A. Dinger, E. Kurtz, C. Klingshirn and H. Kalt, phys. stat. sol. (b) 224 (2001) 437

    Article  CAS  Google Scholar 

  38. S. Wachter, B. Dal Don, M. Baldauf, M. Schmidt, E. Kurtz, C. Klingshirn, H. Kalt, D. Litvinov, D. Gerthsen; Proc. Exc. Proc. Cond. Matter (EXCON 2000), Osaka, Japan, Ed. K. Cho and A. Matsui, World Scientific, Singapore (2001), 17

    Google Scholar 

  39. B. Dal Don, R. Dianoux, S. Wachter, M. Schmidt, E. Kurtz, G. von Freymann, C. Klingshirn, M. Wegener and H. Kalt; phys. stat. sol. (b) 229 (2002) 463

    Article  CAS  Google Scholar 

  40. H. Preis. K. Fuchs, W. Gebhardt; phys. stat. sol. (b) 224 (2001) 527

    Article  CAS  Google Scholar 

  41. E. Kurtz, T. Sekiguchi, Z. Zhu, T. Yao, J.X. Shen, Y. Oka, M. Y. Shen, T. Goto; Superlattic.es and Microstructures 25 (1999) 119

    Article  CAS  Google Scholar 

  42. D. Litvinov, A. Rosenauer, D. Gerthsen and H. Preis; phys. stat. sol. (b) 229 (2002) 523

    Article  CAS  Google Scholar 

  43. D. Litvinov, A. Rosenauer, D. Gerthsen, H. Preis, E. Kurtz and C. Klingshirn; phys. stat. sol. 224 (2001) 147

    Article  CAS  Google Scholar 

  44. D. Litvinov, A. Rosenauer, D. Gerthsen, H. Preiss, E. Kurtz; J. Appl. Phys. 89 (2001) 3695

    Article  CAS  Google Scholar 

  45. P.R. Kratzert, M. Rabe, F. Hcnncbcrgcr; phys. stat. sol. (b) 224 (2001) 179

    Article  CAS  Google Scholar 

  46. E. Kurtz, M. Schmidt, M. Baldauf, S. Wachter, M. Grün, H. Kalt, C. Klingshirn, D. Litvinov, A. Rosenauer, and D. Gerthsen; Appl. Phys. Lett. 79 (2001) 1118

    Article  CAS  Google Scholar 

  47. T. V. Shubina, A. A. Sitnikova, V. A. Solov’ev, A. A. Toropov, I. V. Scdova, S. V. Ivanov, M. Keim, A. Waag, G. Landwehr; J. Cryst. Growth 214/215 (2000), 727

    Article  CAS  Google Scholar 

  48. D. Lüerßcn, R. Bleher, H. Kalt, H. Richter, T. Schimmel, A. Rosenauer, D. Litvinov, A. Kamilli, D. Gerthsen, B. Jobst, K. Ohkawa, D. Hommel; J. Cryst. Growth 214/215 (2000) 634

    Article  Google Scholar 

  49. A. Klochikhin, A. Reznitskii, L. Tenishev, S. Permogorov, S. Ivanov, S. Sorokin, Kh. Mumanis, R. Seisyan, C. Klingshirn; JETP Letters 71 (2000) 242

    Article  CAS  Google Scholar 

  50. A. Klochikhin, A. Reznitsky, S. Permogorov, M. Grün, M. Hettcrieh, C. Klingshirn, V. Lyssenko, W. Langbein, J.M. Hvam; Phys. Rev. B 59 (1999) 12947

    Article  CAS  Google Scholar 

  51. H. Mathieu, P. Lefebvre, P. Christol; Phys. Rev. B 46 (1992) 4092

    Article  Google Scholar 

  52. S. Lankes, T. Reisinger, B. Hahn, C. Meier, M. Meier, W. Gebhardt; J. Cryst. Growth 159 (1995), 480

    Article  Google Scholar 

  53. P. Goldfinger, M. Jeunehomme; Trans. Faraday Soc. 59 (1963), 2851

    Article  CAS  Google Scholar 

  54. Z.R. Wasiliewski; 4th Int. Workshop MBE and VPE Growth Phys. Tcchnol. (01-MBE& VPE-GPT) Warsaw, Poland (2001), to appear in Thin Solid Films (2002)

    Google Scholar 

  55. E. Kurtz, M. Schmidt, M. Baldauf, S. Wachter, M. Grün, D. Litvinov, S. K. Hong, J. X. Shen, T. Yao, D. Gerthsen, H. Kalt, C. Klingshirn; J. Cryst. Growth 214/215 (2000) 712

    Article  CAS  Google Scholar 

  56. M. Strassburg, J. Christen, M. Dworzak, R. Heitz, A. Hoffmann, M. Bartels, K. Lischka, D. Schikora; phys. stat. sol. (b) 229 (2002) 529

    Article  CAS  Google Scholar 

  57. I. L. Krestnikov, M. Strassburg, M. Caesar, A. Hoffmann, U. W. Pohl, and D. Bimberg, N. N. Ledentsov, P. S. Kopev, and Zh. I. Alferov, D. Litvinov, A. Rosenauer and D. Gerthsen; Phys. Rev. B 60 (1999) 8695

    Article  CAS  Google Scholar 

  58. S. Mackowski et al.; 4th Int. Workshop MBE and VPE Growth Phys. Technol. (01-MBE& VPE-GPT) Warsaw, Poland (2001), to appear in Thin Solid Films (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kurtz, E. et al. (2003). Self-Organized Semiconductor Quantum Islands in A Semiconducting Matrix. In: Di Bartolo, B. (eds) Spectroscopy of Systems with Spatially Confined Structures. NATO Science Series, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0287-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0287-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1122-1

  • Online ISBN: 978-94-010-0287-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics