Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 90))

Abstract

We present an approach to quantitative description of the states split off from the electronic bands due to disorder which exists in crystalline solid solutions. The concentration of the solution component creating the localizing potential is supposed to be below the critical one for percolation over the lattice sites. In this concentration range the clusters composed by the atoms of minor solution component, which produce the localized states for carriers and/or excitons, are isolated in space. The calculation of the number of cluster states is one of well known problems of the percolation theory over the crystal sites. We describe how the results of this theory can be used for calculation of the density of localized states, which, in turn, is used for the modelling of the spectral density (or absorption coefficient) of exciton states. Then, the continuum classical percolation theory over the overlapping spheres is used for the description of the luminescence spectrum of localized excitons. The models used describe quite well the steady-state optical spectra of diluted GaS1-cIncN solid solution and also that of ZnSe1-cTec and CdS1-cSec solid solutions in all the composition range. These models can also account for the nontrivial peculiarities of the luminescence intensity decay at long delay times after the pulse excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alferov, Zh. I., Portnoi, E. L. and Rogachev, A. A. (1968) On the absorption edge width in semiconductor solid solutions, Sov. Phys.-Semicond. 2, 1001–1004.

    Google Scholar 

  2. Permogorov, S. and Reznitsky, A. (1992) Effect of disorder on the optical spectra of wide-gap II-VI semiconductor solid solutions, j. of Lurnin. 52, 201–223.

    CAS  Google Scholar 

  3. Schwab. H., Dörnfeld, C., Göbel, E. O., Hvam, J. M., Klingshirn, C., Kuhl, J., Lyssenko, V. G., Majumder, F. A., Noll. G., Nunnenkamp, J., Pantke, K. H., Renner, R., Reznitsky, A., Siegner, U., Swoboda, H. E. and Weber, Ch. (1992) Dynamics of excitons in CdS, CdSe, and CdS1-xSex, phys. stat. sol. (b) 172, 479–519.

    Article  CAS  Google Scholar 

  4. Klingshirn, C. (1989) Localization and percolation in alloy semiconductors, in Proc. Intern. Summer-School on ”Disordered Solids: Structures and Processes”, Erice, Sicily, ed. by B. Di Bartolo Ettore Majarana Intern. Science Series, 46, 111–143.

    Google Scholar 

  5. Klochikhin, A. A., Permogorov, S. A. and Reznitsky, A. N. (1997) Exciton luminescence from fluctuation-induced tails in the density of states of disordered solid solutions, Phys. Solid State 39, 1035–1046.

    Article  Google Scholar 

  6. Klochikhin, A. A., Permogorov, S. A. and Reznitsky, A. N. (1999) Fluctuation states and optical spectra of solid solutions with a strong isoelectronic perturbation, JETP 88, 574–585.

    Article  CAS  Google Scholar 

  7. Klochikhin, A., Reznitsky, A., Permogorov, S., Breitkopf, T., Gnün, M.. Hetterich, M., Klingshirn, C., Lyssenko, V., Langbein, W., and Hvam, J. M. (1999) Luminescence spectra and kinetics of disordered solid solutions, Phys. Rev. B 59, 12497–12972.

    Article  Google Scholar 

  8. Harrison, W. A., (1980) Electronic structure and the properties of solids, W.H.Freeman&Co, San Francisco.

    Google Scholar 

  9. Cohen, M. L. and Bergstresser, T. K. (1966) Band structure and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures, Phys. Rev. 141, 789–796.

    Article  CAS  Google Scholar 

  10. Bergstresser, T.K., and Cohen, M. L. (1967) Electronic structure and optical properties of hexagonal CdSe, CdS and ZnS, Phys. Rev. 164, 1069–1080.

    Article  CAS  Google Scholar 

  11. Koster, G. F. and Slater,.J. C. (1954) Wave functions for impurity levels. Phys. Rev. 95, 1167–1176.

    Article  Google Scholar 

  12. Lannoo, M. and Lenglart, P. (1969) Study of neutral vacancy in semi-conductors, j. Phys. Chem. Solids 30, 2409–2418.

    Article  CAS  Google Scholar 

  13. Bernholc, J. and Pantelides, S.T. (1978) Scattering-theoretic method for defects in semiconductors. 1. Tight-binding description of vacancies in Si, Gc, and GaAs. Phys. Rev. B 18, 1780–1789.

    Article  CAS  Google Scholar 

  14. Iseler, G. W. and Strauss, A. J. (1970) Photoluminescence duc to isoelectronic oxygen and tellurium traps in II-VI alloys, J. of Lumin. 3, 1–17.

    Article  CAS  Google Scholar 

  15. Cuthbert, J. D. and Thomas, D. G. (1968) Optical properties of tellurium as an isoelectronic trap in cadmium sulfide, J. of Appl. Phys. 39, 1573–1580.

    Article  CAS  Google Scholar 

  16. Abdel-Kader, A., Bryant, F. J. and Hogg, J. H. C. (1984) Tellurium doping and implantation of zinc sulfide, phys. stat. sol. (a) 81, 333–342.

    Article  CAS  Google Scholar 

  17. Göde, O., Heimbrodt, W. and Muller, R. (1981) CdS1-xTex as persistence-type semiconductor mixed crystals, phys. stat. sol. (b) 105, 543–550.

    Article  Google Scholar 

  18. Onodera, Y. and Toyozawa, Y. (1968) Persistence and amalgamation types in the electronic structures of mixed crystals, J. Phys. Soc. of Japan 24, 341–355.

    Article  CAS  Google Scholar 

  19. Hill, R. and Richardson, D. (1973) The variation of energy gap with composition in ZnS-Te alloys, J. Phys. C: Sol. State Phys. 6, L115–L119.

    Article  CAS  Google Scholar 

  20. Sykes, M. F., Gaunt, D. S. and Glen, M. (1976) Percolation processes in three dimensions, J. Phys. A: Math. Gen. 9, 1705–1712.

    Article  Google Scholar 

  21. Stolz, H., von der Osten, W., Permogorov, S., Reznitsky, A. and Naumov, A. (1988) Selective excitation of localized excitons in ZnSe-Te solid solutions, J. Phys. C: Solid State Phys. 21, 5139–5147.

    Article  CAS  Google Scholar 

  22. Permogorov, S., Reznitsky, A., Naumov, A., Stolz, H., von der Osten, W., (1989) Localization of excitons at small Te clusters in diluted ZnSe-Te solid solutions, J. Phys.: Condens. Matter 1, 5125–5137.

    Article  CAS  Google Scholar 

  23. Klochikhin, A., Reznitsky, A., Tenishev, L., Permogorov, S., Lundin, W., Usikov, A., Sorokin, S., Ivanov, S., Schmidt, M., Kalt, H. and Klingshirn, C. (2001) Exciton localization by clusters in diluted bulk InGaN and two-dimensional ZnCdSe solid solutions, Proc. 9-th Intern. Symp. NANOSTRUCTURES: Physics and Technology, S.-Petersburg, pp. 554–557.

    Google Scholar 

  24. Lifshitz, I. M. (1956) Some problems of the dinamic theory of non-ideal crystal lattices, Nuovo Cimento, 1956, Suppl. at vol. 3, ser. X, 716–734.

    Article  Google Scholar 

  25. Wei, S.-H., Ferreira, L.G., Bernard, J.E. and Zunger, A. (1990), Electronic properties of random alloys: Special quasirandom structures, Phys. Rev. B 42, 9622–9649.

    Article  CAS  Google Scholar 

  26. Wei S.-H. and Zunger, A. (1991), Disorder effects on the density of states of the II-VI semiconductor alloys Hg0.5Cd0.5Te, Cd0.5Zn0.5Te, and Hg0.5Zn0.5Te Phys. Rev. B 43, 1662–1677.

    Article  CAS  Google Scholar 

  27. Schiff L.I., Quantum mechanics, N.Y., McGrow-Hill, 1968.

    Google Scholar 

  28. Bunde, A. and Havlin, S. (1994) Percolation 1 in Fractals and Disordered Systems. Eds. A. Bunde and S. Havlin, Springer-Verlag, Berlin, Heidelberg, New York. London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 51–95.

    Google Scholar 

  29. Haan, S. W. and Zwanzig, R., (1977) Series expansions in continuum percolation problem, J. Phys. A: Math. Gen. 10, 1547–1555.

    Article  Google Scholar 

  30. Havlin, S. and Bunde, A. (1994) Fractals and Disordered Systems, Eds. A. Bunde and S. Havlin, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 97–149.

    Google Scholar 

  31. Flammang, A., (1977) Percolation cluster sizes and perimeters in three dimensions, Z.Physik, B 28, 47–50.

    Article  CAS  Google Scholar 

  32. Kirkpatrick, S. and Eggarter, T.P., (1972) Localized states of a. binary alloy, Phys.Rev. B 6, 3598–3609.

    Article  CAS  Google Scholar 

  33. Wetzel, C., Takeuchi, T., Yamaguchi, S., Ketoh, H., Amano, H., Akasaki, I. (1998) Optical band gap in Ga1—xlnxN (0ixi0.2) on GaN by photorellection spectroscopy, Appl. Phys. Lett. 73, 1994–1996.

    Article  CAS  Google Scholar 

  34. McCluskey, M.D., Van der Walle, C.G., Master, C.P., Romano, L.T., Johnson, N.M. (1998) Large band bowing of InxGa1-x N alloys, Appl. Phys. Lett. 72, 2725–2726.

    Article  CAS  Google Scholar 

  35. Naumov, A., Permogorov, S., Reznitsky, A., Verbin, S., Klochikhin, A. (1990) Exciton absorption in GdS-Se and ZnSe-Te solid solutions, J. Cryst. Growth 101, 713–717.

    Article  CAS  Google Scholar 

  36. Bernard, J.E. and Zunger, A. (1986), Optical bowing in zinc chalcogenide semiconductor alloys, Phys. Rev. B 34, 5992–5995.

    Article  CAS  Google Scholar 

  37. Wei, S.-H. and Zunger, A. (1996), Giant and composition-dependent optical bowing coefficient in GaAsN alloys, Phys. Rev.Lett. 76, 664–667.

    Article  CAS  Google Scholar 

  38. Bellaiche, L., Mattila, T., Wang, L.-W., Wei, S.-H., Zunger, A. (1999), Resonant hole localization and anomalous optical bowing in InGaN alloys Appl. Phys. Lett. 74, 1842–1844.

    Article  CAS  Google Scholar 

  39. Bellaiche, L. and Zunger, A. (1998), Effect of atomic short-range order on the electronic and optecal properties of GaAsN, GalnN and GaIn As alloys Phys. Rev. B. 57, 4425–4431.

    Article  CAS  Google Scholar 

  40. Kash, J. A., Ron, A. and Cohen, E. (1983) Subnanosecond spectroscopy of disorder-localized excitons in CdS0.53Se0.47. Phys. Rev. B 28, 6147–6150.

    Article  CAS  Google Scholar 

  41. Reznitsky, A., Naumov, A., Verbin, S., Aaviksoo, J. and Reimand, I. (1991) Exciton and pair recombination through alloy-trapped states in CdS1-x>Sex and ZnSe1-xTex solid solutions, J. Lumin. 47, 297–301.

    Article  Google Scholar 

  42. Kuzovkov, V. N. and Kotomin, E. A. (1983) Some problems of recombination kinetics. II, Chem. Phys. 81, 335–347.

    Article  CAS  Google Scholar 

  43. Noolandi, J., Hong, K. M. and Street, R. A. (1980) A geminate recombination model for photoluminescence decay inplasma-deposited amorphous Si: H, Sol. St. Gomm. 34, 45–48.

    Article  CAS  Google Scholar 

  44. Mozumder, A. (1968) Theory of neutralization of an isolated ion pair: application of the method of prescribed diffusion to random walk in a Coulomb field, J. Chem. Phys. 48, 1659–1665.

    Article  Google Scholar 

  45. Thomas, D. G., Hopfield, J. J. and Augustyniak, W. M. Kinetics of radiative recombination at randomly distributed donors and acceptors, (1965) Phys. Rev. 140, A202–A220.

    Article  Google Scholar 

  46. Kuzovkov, V. and Kotomin, E. (1988) Kinetics of bimolecular reactions in condenced media: critical phenomena and microscopic self-organisation, Rep. Prog. Phys. 51, 1479–1523.

    Article  CAS  Google Scholar 

  47. Balagurov, B. Ja. and Vax V. G. (1973) On random walk of a particle in a lattice with traps, JETP 65, 1939–1946.

    Google Scholar 

  48. Meaklin, P. and Stanley, H. E. (1984) Novel dimension-independent behaviour for diffusive annihilation on percolation fractals, J. Phys. A: Math. Geu. 17. L173-L177.

    Google Scholar 

  49. Kang, K. and Redner, S. (1984) Scaling approach for kinetics of recombination processes, Phys. Rev. Lett. 52, 955–958.

    Article  CAS  Google Scholar 

  50. Grassberger, P. and Procaccia, I. (1982) The long time properties of diffusion in a medium with static traps, J. Chem. Phys. 77(12), 6281–6284.

    Article  Google Scholar 

  51. Alexander, S. and Orbach, R. (1982) Density of states on fractals: <<fractons>>, J. Physique-Letters 43, L625–L631.

    Article  Google Scholar 

  52. Nakayama, T., Yakubo, K. and Orbach, R. (1994), Dynamical properties of fractal network: scaling, numerical simulations, and physical realizations, Rev. Mod. Phys 66, 381–443.

    Article  CAS  Google Scholar 

  53. Klochikhin, A., Ogloblin, S. G., Permogorov, S., Reznitsky, A., Klingshirn, C., Lyssenko, V. and Hvam, J. M. (2000) Long-time luminescence kinetics of localized excitons and conduction band smearing in ZnSe1_cTec solid solutions, JETP Letters 72, 320–323.

    Article  CAS  Google Scholar 

  54. Klochikhin, A., Reznitsky, A., Tenishev, L., Permogorov, S., Ivanov, S., Sorokin, S., Mumanis, Kh., Seisyan, R. and Klingshirn, C. (2000) Exciton luminescence of quasi-two-dimensional solid solutions, JETP Letters 71, 242–245.

    Article  CAS  Google Scholar 

  55. Bimberg D., Grundmann M., Ledentsov N.N., Quantum dot heterostructures, John Wiley&Sons Ltd, 1997

    Google Scholar 

  56. Landolt-Buernstein, New Series Group III, Vol. 34, Part 1, C. Klingshirn ed.. Springer, Berlin (2001), section 4.3.6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reznitsky, A., Klochikhin, A., Permogorov, S. (2003). Percolation and Localization in Disordered Solid Solutions. In: Di Bartolo, B. (eds) Spectroscopy of Systems with Spatially Confined Structures. NATO Science Series, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0287-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0287-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1122-1

  • Online ISBN: 978-94-010-0287-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics