Advertisement

Technology and Mathematics Education: A Multidimensional Study of the Evolution of Research and Innovation

  • Jean-Baptiste Lagrange
  • Michèle Artigue
  • Colette Laborde
  • Luc Trouche
Part of the Springer International Handbooks of Education book series (SIHE, volume 10)

Abstract

This chapter will highlight the interest and necessity of considering a plurality of perspectives (or dimensions) when addressing the issue of the integration of information and communication technologies (JCT) into the teaching and learning of mathematics. It will also show how this multidimensional perspective can be efficient for an analysis of the existing literature.

The paper draws on a meta–study of a comprehensive corpus of publications about research and innovation in the world–wide field of the integration of JCT from 1994 to 1998, For this study we built a multidimensional framework and a data analysis procedure, and obtained a synthesis of literature. The study of ten research papers that the statistical procedure made appear as paradigmatic examples helped to discern an evolution towards more awareness of the complexity of JCT integration. The multidimensional framework aims to provide innovators and researchers with a set of references to deal with this complexity

Keywords

Learning Situation Computer Algebra System Dynamic Geometry Software Utilisation Scheme Instrumental Genesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artigue, M. (1998). Teacher training as a key issue for the integration of computer technologies. In Tinsley & Johson (Eds.), Information and Communications Technologies in School Mathematics (pp. 121–129). IFIP. Chapman & Hall.Google Scholar
  2. Bangert-Drowns, R., & Rudner, L. (1991). Meta—analysis in educational research. ERIC Digest, ED 339748.Google Scholar
  3. Berry, J., Graham, T., & Watkins, A. (1994). Integrating the DERIVE Program into the teaching of mathematics. International DERIVE Journal, 1 (1), 83–96.Google Scholar
  4. Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer Academic.Google Scholar
  5. Chacon, P., & Soto-Johnson, H. (1998). The effect of CAI in college algebra incorporating both drill and exploration. International Journal of Computer Algebra in Mathematics Education, 5(4), 201–216.Google Scholar
  6. Dubinsky, E. (1991). Reflexive abstraction. In Tall, D. (Ed.), Advanced mathematical thinking (pp. 95–123). Kluwer Academic.Google Scholar
  7. Graham, A., & Thomas, M. (1997). Tapping into algebraic variables through the graphic calculator. In Pehkonen, Erkki (Ed.), Proceedings of the 21st International Conference for the Psychology of Mathematics Education, 3, 9–16. Lahti, Finland.Google Scholar
  8. Haimes, D., & Malone, J. (2001). Teaching algebra in a technology—enriched environment. In Chick et al. (Eds.), Proceedings of the 12th ICMI Study Conference, The University of Melbourne.Google Scholar
  9. Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Norwood, N.J.: Ablex Publishing Corp.Google Scholar
  10. Hoyle s, C., & Healy, L. (1997). Unfolding meanings for reflective symmetry. International Journal of Computers for Mathematical Learning, 2, 27–59.CrossRefGoogle Scholar
  11. Kendal, M., & Stacey, K. (1999). CAS, Calculus and CLASSROOMS. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of PME Technion (pp. 3.129 136). Haifa, Israel.Google Scholar
  12. Kieran, C. (2001). Contribution to the opening plenary panel. 12th ICMI Study Conference, The University of Melbourne.Google Scholar
  13. Kieran, C, Boileau, A., & Garancon, M. (1996). Introducing algebra by means of technology supported, functional approach. In Bednarz et al. (Eds.), Approaches to algebra. Perspectives for research and teaching (pp. 257–293). Kluwer Academic Publishers.Google Scholar
  14. Koedinger, K., & Anderson, J. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30–43.Google Scholar
  15. Laborde, C., & Capponi, B. (1994). Cabri–géométre, constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. Recherche en Didactique des Mathématiques, 14, 165–210.Google Scholar
  16. Lagrange, J. B. (2000). L’intégration d’instruments informatiques dans l’enseignement: une approche par les techniques. Educational Studies in Mathematics, 43, 1–30.CrossRefGoogle Scholar
  17. Mariotti, M. (to appear). The influence of technological advances on students’ mathematics learning. In L. English, M. G. Bartolini Bussi, G. Jones, R. Lesh & D. Tirosh (Eds.), Handbook of International Research in Mathematics Education. Lawrence Erbaum Associates.Google Scholar
  18. Mayes, R. (1997). Current state of research into CAS in mathematics education. In J. Berry & J. Monaghan (Eds.), The state of computer algebra in mathematics education (pp. 171–189). Chartwell— Bratt.Google Scholar
  19. Monaghan, J. (2001). Teachers’ classroom interactions in ICT—based mathematics lessons In M. van den Heuvel (Ed.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education, 3, 383–390. Utrecht, The Netherlands.Google Scholar
  20. Noss, R., & Hoyles, C. (1996). Windows on Mathematical Meanings —Learning Cultures and Computers. Kluwer Academic.Google Scholar
  21. Pea, R., & Roy, D. (1987). Cognitive technologies for mathematics education. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education, pp.89–122. Hillsdale, N. J.: Lawrence Erlbaum.Google Scholar
  22. Pratt, D., & Ainley, J. (1997). The construction of meanings for geometric construction: Two contrasting cases. International Journal of Computers for Mathematical Learning, 1(3), 293–322.CrossRefGoogle Scholar
  23. Sutherland, R., & Balachelf, N. (1999) Didactical complexity of computational environments for the learning of mathematics. International Journal of Computers for Mathematical Learning, 4(1), 1–26.CrossRefGoogle Scholar
  24. Tall, D. (1993). Interrelationships, between mind and computer: processes, images, symbols. Advanced Educational Technologies for Mathematics and Science, NATO ASI series F, 107, 385–414. Springer Verlag.Google Scholar
  25. Tall, D., & Thomas, M. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, (22), pp. 125–147.Google Scholar
  26. Trouche, L. (2000). La parabole du gaucher et de la casserolê bee verseur: Etude des processus d’apprentissage dans un environnement de calculatrices complexes. Educational Studies in Mathematics, 41, 239–264.CrossRefGoogle Scholar
  27. Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, X(1), 77–101.Google Scholar
  28. Wilson, S. M., Floden, R. E., & Ferrini-Mundy, J. (2001). Teacher Preparation Research: Current Knowledge, Gaps, and Recommendations. Center for the Study of Teaching and Policy, University of Washington, USA.Google Scholar
  29. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. The Journal of Child Psychology and Psychiatry, 17, 89–100.CrossRefGoogle Scholar
  30. Yerushalmy, M. (1997). Reaching the unreachable: technology and the semantics of asymptotes, International Journal of Computers for Mathematical Learning, 2,1-25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Jean-Baptiste Lagrange
    • 1
  • Michèle Artigue
    • 2
  • Colette Laborde
    • 3
  • Luc Trouche
    • 4
  1. 1.DIDIREM (Paris VII) and Teacher Education Institute of ReimsFrance
  2. 2.DIDIREM and IREM, UFR of MathematicsUniversité Paris VIIFrance
  3. 3.Laboratoire Leibniz (IMAG) and Teacher EducationInstitute of GrenobleFrance
  4. 4.ERES and LIRMMIREM (Mathematics Teaching Research Institute) Université Montpellier IIFrance

Personalised recommendations