Skip to main content

2R or not 2R: Testing hypotheses of genome duplication in early vertebrates

  • Chapter
  • 619 Accesses

Abstract

The widely popular hypothesis that there were two rounds of genome duplication by polyploidization early in vertebrate history (the 2R hypothesis) has been difficult to test until recently. Among the lines of evidence adduced in support of this hypothesis are relative genome size, relative gene number, and the existence of genomic regions putatively duplicated during polyploidization. The availability of sequence for a substantial portion of the human genome makes possible the first rigorous tests of this hypothesis. Comparison of gene family size in the human genome and in invertebrate genomes shows no evidence of a 4:1 ratio between vertebrates and invertebrates. Furthermore, explicit phylogenetic tests for the topology expected from two rounds of polyploidization have revealed alternative topologies in a substantial majority of human gene families. Likewise, phylogenetic analyses have shown that putatively duplicated genomic regions often include genes duplicated at widely different times over the evolution of life. The 2R hypothesis thus can be decisively rejected. Rather, current evidence favors a model of genome evolution in which tandem duplication, whether of genomic segments or of individual genes, predominates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bork, P. and Copley, R. (2001) Filling in the gaps. Nature, 409, 818–820.

    Article  PubMed  Google Scholar 

  • Diaz, M.O., Pomykala, H.M., Bohlander, S.K., Maltepe, E., Malik, K., Brownsein, B. and Olapede, O.I. (1994) Structure of the human type-I interferon gene cluster determined from a YAC clone contig. Genomics, 22, 540–552.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Friedman, R. and Hughes, A.L. (2001) Pattern and timing of gene duplication in animal genomes. Genome Res., in press.

    Google Scholar 

  • Guigo, R., Muchnik, I. and Smith, T.F. (1996) Reconstruction of ancient molecular phylogeny. Mol. Phyl. Evol., 46, 189–213.

    Article  Google Scholar 

  • Hughes, A.L. (1995) The evolution of the type I interferon gene family in mammals. J. Mol. Evol., 41, 539–548.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L. (1998) Phylogenetic tests of the hypothesis of block duplication of homologous genes on human chromosomes 6, 9, and 1. Mol. Biol. Evol., 15, 854–870.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L. (1999a) Adaptive Evolution of Genes and Genomes, Oxford University Press, New York, NY

    Google Scholar 

  • Hughes, A.L. (1999b) Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J. Mol. Evol., 48, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L. (1999c) Genomic catastrophism and the origin of vertebrate immunity. Arch. Immunol. Ther. Exper., 47, 347–353.

    CAS  Google Scholar 

  • Hughes, A.L. (2000) Polyploidization and vertebrate origins: a review of the evidence. In Comparative Genomics (Eds., Sankoff, S. and Nadeau, J.H.). Kluwer, Dordrecht, pp. 493–502.

    Chapter  Google Scholar 

  • Hughes, A.L. (2001) Evolution of the integrin α and β protein families. J. Mol. Evol., 52, 63–72.

    PubMed  CAS  Google Scholar 

  • Hughes, M.K. and Hughes, A.L. (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol. Biol. Evol., 10, 1360–1369.

    PubMed  CAS  Google Scholar 

  • Hughes, A.L. and Roberts, R.H. (2000) Independent origin of IFN-α and IFN-β in birds and mammals. J. Interferon Cytokine Res., 20, 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L., da Silva, J. and Friedman, R. (2001) Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res., 11, 771–780.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–891.

    Article  Google Scholar 

  • Kasahara, M., Nayaka, Y., Satta, Y. and Takahata, N. (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet., 13, 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Lundin, L.G. (1993) Evolution of the vertebrate genome as reflected in paralogous chromosome regions in man and the house mouse. Genomics, 16, 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Makałowski, W. (2001) Are we polyploids? A brief history of one hypothesis. Genome Res., 11, 667–670.

    Article  PubMed  Google Scholar 

  • Meyer, A. and Schartl, M. (1999) Gene and genome duplication in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol., 11, 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication, Springer, New York, NY.

    Google Scholar 

  • Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sidow, A. (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev., 6, 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Simmen, M.W., Leitger, S., Clark, V.H., Jones, S.J.M. and Bird, A. (1998) Gene number in an invertebrate chordate, Ciona intestinalis. Proc. Natl. Acad. Sci. USA, 95, 4437–4440.

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg, A. (1993) Integrins and their ligands. Curr. Top. Microbiol. Immunol., 184, 7–35.

    Article  PubMed  CAS  Google Scholar 

  • Strimmer, K. and von Haeseler, A. (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol., 13, 964–969.

    Article  CAS  Google Scholar 

  • Yeager, M. and Hughes, A.L. (1999) Evolution of the mammalian MHC: natural selkection, recombination, and convergent evolution. Immunol. Rev., 167, 45–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hughes, A.L., Friedman, R. (2003). 2R or not 2R: Testing hypotheses of genome duplication in early vertebrates. In: Meyer, A., Van de Peer, Y. (eds) Genome Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0263-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0263-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3957-4

  • Online ISBN: 978-94-010-0263-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics