Skip to main content

Major transitions in evolution by genome fusions: from prokaryotes to eukaryotes, metazoans, bilaterians and vertebrates

  • Chapter
Genome Evolution

Abstract

The major transitions in human evolution from prokaryotes to eukaryotes, from protozoans to metazoans, from the first animals to bilaterians and finally from a primitive chordate to vertebrates were all accompanied by increases in genome complexity. Rare fusion of divergent genomes rather than continuous single gene duplications could explain these jumps in evolution. The origin of eukaryotes was proposed to be due to a symbiosis of Archaea and Bacteria. Symbiosis is clearly seen as the source for mitochondria. A fundamental difference of higher eukaryotes is the cycle from haploidy to diploidy, a well-regulated genome duplication. Of course, self-fertilization exists, but the potential of sex increases with the difference of the haploid stages, such as the sperm and the egg. What should be the advantage of having two identical copies of a gene? Still, genes duplicate all the time and even genomes duplicate rather often. In plants, polyploidy is well recognized, but seems to be abundant in fungi and even in animals, too. However, hybridization, rather than autopolyploidy, seems to be the potential mechanism for creating something new. The problem with chimaeric, symbiotic or reticulate evolution events is that they blur phylogenetic lineages. Unrecognized paralogous genes or random loss of one of the paralogs in different lineages can lead to false conclusions. Horizontal genome transfer, genome fusion or hybridization might be only truly innovative combined with rare geological transitions such as change to an oxygen atmosphere, snowball Earth events or the Cambrian explosion, but correlates well with the major transitions in evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A. and Lake, J.A. (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815.

    Article  Google Scholar 

  • Baldauf, S.L., Roger, A.J., Wenk-Siefert, I. and Doolittle, W.F. (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290, 972–977.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft, I. (2001) Duplicate and diverge: the evolution of plant genome microstructure. Trends Genet., 17, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Brooke, N.M., Garcia-Fernandez, J. and Holland, P.W. (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature, 392, 920–922.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, J.A. (2000) Assessing evolutionary relationships among microbes from whole-genome analysis. Curr. Opin. Microbiol, 3, 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, D.E. and Holland, P.W. (2001) Ancient origin of the Hox gene cluster. Nature Rev. Genet., 2, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, T.J. and Spring, J. (2000) Evidence in favour of ancient octaploidy in the vertebrate genome. Biochem. Soc. Trans., 28, 259–264.

    PubMed  CAS  Google Scholar 

  • Holland, P.W., Garcia-Fernandez, J., Williams, N.A. and Sidow, A. (1994) Gene duplications and the origins of vertebrate development. Development, Suppl. 1994, 125–133.

    CAS  Google Scholar 

  • Horiike, T., Hamada, K., Kanaya, S. and Shinozawa, T. (2001) Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol., 3, 210–214.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L. (1999) Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J. Mol. Evol., 48, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, W.T., Crowley, T.J., Baum, S.K. and Peltier, W.R. (2000) Neoproterozoic’ snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425–429.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  • Kroiher, M., Miller, M.A. and Steele, R.E. (2001) Deceiving appearances: signaling by ‘dead’ and ‘fractured’ receptor proteintyrosine kinases. BioEssays, 23, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Lake, J.A. (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature, 331, 184–186.

    Article  PubMed  CAS  Google Scholar 

  • Llorente, B., et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett., 487, 122–133.

    Article  PubMed  CAS  Google Scholar 

  • Lundin, L.G. (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics, 16, 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Lundin, L.G. (1999) Gene duplications in early metazoan evolution. Semin. Cell Dev. Biol., 10, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. and Conery, J.S. (2000) The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. (1970) Origin of Eukaryotic Cells, Yale University Press, New Haven, CT.

    Google Scholar 

  • Martin, A. (2001) Is tetralogy true? Lack of support for the ‘one-to-four rule’. Mol. Biol. Evol., 18, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Pebusque, M.J., Coulier, F., Birnbaum, D. and Pontarotti, P. (1998) Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol. Biol. Evol., 15, 1145–1159.

    Article  PubMed  CAS  Google Scholar 

  • Philippe, H., Germot, A. and Moreira, D. (2000) The new phylogeny of eukaryotes. Curr. Opin. Genet. Dev., 10, 596–601.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, G.M., et al. (2000) Comparative genomics of the eukaryotes. Science, 287, 2204–2215.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, G.M. (2001) The draft sequences. Comparing species. Nature, 409, 820–821.

    Article  PubMed  CAS  Google Scholar 

  • Ruddle, F.H., Bentley, K.L., Murtha, M.T. and Risch, N. (1994) Gene loss and gain in the evolution of the vertebrates. Development, Suppl. 1994, 155–161.

    Google Scholar 

  • Simmen, M.W., Leitgeb, S., Clark, V.H., Jones, S.J. and Bird, A. (1998) Gene number in an invertebrate chordate, Ciona intestinalis. Proc. Natl. Acad. Sci. USA, 95, 4437–4440.

    Article  PubMed  CAS  Google Scholar 

  • Skrabanek, L. and Wolfe, K.H. (1998) Eukaryote genome duplication — where’s the evidence? Curr. Opin. Genet. Dev., 8, 694–700.

    Article  PubMed  CAS  Google Scholar 

  • Spring, J. (1997) Vertebrate evolution by interspecific hybridisation — are we polyploid? FEBS Lett., 400, 2–8.

    Article  PubMed  CAS  Google Scholar 

  • Spring, J., Yanze, N., Middel, A.M., Stierwald, M., Groger, H. and Schmid, V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev. Biol., 228, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Szathmary, E. and Maynard Smith, J. (1995) The major evolutionary transitions. Nature, 374, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C., et al. (2001) The sequence of the human genome. Science, 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. and Gu, X. (2000) Evolutionary patterns of gene families generated in the early stage of vertebrates. J. Mol. Evol., 51, 88–96.

    PubMed  CAS  Google Scholar 

  • Wolfe, K.H., Shields, D.C. (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387, 708–713.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spring, J. (2003). Major transitions in evolution by genome fusions: from prokaryotes to eukaryotes, metazoans, bilaterians and vertebrates. In: Meyer, A., Van de Peer, Y. (eds) Genome Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0263-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0263-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3957-4

  • Online ISBN: 978-94-010-0263-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics