Skip to main content

Science of the Inner Planets From Small Ground-Based Telescopes

  • Chapter
The Future of Small Telescopes in the New Millennium

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 287/8/9))

  • 338 Accesses

Abstract

For Mercury, Venus, Mars, and the Moon, 4-m and smaller telescopes make profound contributions to our knowledge. In fact, most non-spacecraft discovery has been made with telescopes from lO-cm to 3-m aperture. There is much more that can be done with the same telescopes and improved spectroscopic and imaging instrumentation as it becomes available. Discovery with these telescopes continues as this chapter is being written. More available time with suitable instrumentation on 3-4-m telescopes would open up a new opportunity of discovery for the inner planet atmospheres and surfaces. Some examples of the science discoveries of the past, and current issues waiting to be explored, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, E.S., Schorn, R.A., Woszczyk, A., Tull, R.G., & Little, S.J. 1970. Mars: Detection of Atmospheric Water Vapor during the Southern Hemisphere Spring and Summer Season. Science 170, 1308–1310.

    Article  ADS  Google Scholar 

  • Barker, E.S. 1976. Martian Atmospheric Water Vapor Observations: 1972–74 Apparition. Icarus 28, 247–268.

    Article  ADS  Google Scholar 

  • Barker, E.S. 1979. Detection of SO2 in the UV spectrum of Venus. Geophys. Res. Lett. 6, 117–120.

    Article  ADS  Google Scholar 

  • Baumgardner, J., Mendillo, M., & J. Wilson 2000. A Digital High Definition Imaging System for Spectral Studies of Extended Planetary atmospheres: 1. Initial Results in White Light Showing Features on the Hemisphere of Mercury Unimaged by Mariner 10. Astron. J. 119: 2458–2464.

    Article  ADS  Google Scholar 

  • Bell, J.R.III & D. Crisp 1993. Groundbased Imaging Spectroscopy of Mars in the Near-Infrared- Preliminary Results. Icarus 104, 2–19.

    Article  ADS  Google Scholar 

  • Bell, J.F. & T.R McCord 1989. Mars-Near-infrared Comparative Spectroscopy During the 1986 Opposition. Icarus 79,21–34.

    Article  ADS  Google Scholar 

  • Belton, M. Hunten, D.M. & R.M. Goody 1968. Quantitative Spectroscopy of Venus in the Region 8,000–11,000 Å. In “The Atmospheres of Venus and Mars,” Eds. J.C. Brandt & M.B. McElroy, Gordon & Breach Science Publishers Ltd. p.288

    Google Scholar 

  • Bézard, R, deBergh, C, Fegley, B, Maillard, J.P., Crisp, D. Owen, T. Pollack, J. & D. Grinspoon 1993. The Abundance of Sulfur Dioxide Below the Clouds of Venus. Geophys. Res. Lett. 20,1587–1590.

    Article  ADS  Google Scholar 

  • Bida, T., Killen R. & T. Morgan, 2000. Discovery of Ca in Mercury’s Atmosphere. Nature 404,159–161.

    Article  ADS  Google Scholar 

  • Blaney, D. & T. McCord 1995. Indications of Sulfate Minerals in Martian Soil from Earth-Based Spectroscopy. J. Geophys. Res. 100,14,433–14,441.

    Google Scholar 

  • Butler, B., D. Muhleman, & M.A. Slade 1993. Mercury: Full-Disk Radar Images and the Detection and Stability oflce at the North Pole. J. Geophys. Res. 98: 15,003–15,023.

    Google Scholar 

  • Contarini, G. C. Barbieri, G. Corrain, G. Cremonese, & R. Vio 1996. Spectroscopic Observations of the Sodium Atmosphere of the Moon, Planet. Space Sci. 44, 417–420.

    Article  ADS  Google Scholar 

  • Cremonese G. & S. Verani, 1997. High Resolution Observations of the Sodium Emission from the Moon, Adv. Space Res. 19,1561–1575.

    Article  ADS  Google Scholar 

  • De Bergh, C., Bezard, B., Crisp, D, Maillard, J., Owen, T, Pollack, J, & D. Grinspoon. Water in the Deep Atmosphere of Venus from High-resolution spectra of the Night Side. Adv. Space Res. 15, (4)-79 – (4)88.

    Google Scholar 

  • Hansen, J.E. & A. Arking 1971. The Identification of H2SO4 as the Particles in Venus’ atmosphere. Science 171, 669–670.

    Article  ADS  Google Scholar 

  • Hunten, D.M., G. Cremonese, A.L. Sprague, R.E. Hill, S. Verani, & R.W.H. Kozlowski, 1998. The Leonid Meteor Storm and the Lunar Sodium atmosphere,” Icarus 136, 298–303.

    Article  ADS  Google Scholar 

  • Hunten, D.M., Sprague, A.L. & L.R. Doose 2000. Correction for Dust Opacity of Martian Atmospheric Water Vapor Abundances. Icarus 147,42–48.

    Article  ADS  Google Scholar 

  • Jakosky, B.M., & Barker, E.S. 1984. Comparison of Ground-Based and Viking Orbiter Measurements of Martian Water Vapor: Variability of the Seasonal Cycle. Icarus 57, 322–344.

    Article  ADS  Google Scholar 

  • Killen, R.M., T. H. Morgan, & A. E. Potter 1990. Spatial Distribution of Sodium Vapor in the Atmosphere of Mercury, Icarus 85,145–167.

    Article  ADS  Google Scholar 

  • Killen R.M, Potter, A.E., Fitzsimmons, A., T.H. Morgan 1999. Sodium D2 Line Profiles: Clues to the Temperature Structure of Mercury’s Exosphere. Planet. Space Sci. 47, 1449–1458.

    Article  ADS  Google Scholar 

  • Klassen, D., J. Bell III, Howell, R. Johnson, P. Golisch, W. Kaminski, C. & D. Griep 1999. Infrared Spectral Imaging of Martian Clouds and Ices, Icarus 138,36–48.

    Article  ADS  Google Scholar 

  • Kozlowski, R.W.H., Sprague, A.L. & D.M. Hunten 1990. Observations of Potassium in the Tenuous Lunar Atmospohere. Geophys. Res. Lett. 17,2252–2256.

    Article  ADS  Google Scholar 

  • Meadows, V.C. & D. Crisp 1996. Ground-Based Near-Infrared Observations of the Venus Nightside: The Thermal Structure and Water Abundance Near the Surface. J. Geophys. Res. 101,4595–4622.

    Article  ADS  Google Scholar 

  • Mendillo, M., J. Baumgardner, & B. Flynn 1991. Imaging Observations of the Extended Sodium Atmosphere of the Moon. Geophys. Res. Lett. 18, 2097.

    Article  ADS  Google Scholar 

  • Mendillo M. & J. Baumgardner 1995. Constraints on the Origin of the Moon’s Atmosphere from Observations During a Lunar Eclipse, Nature 377, 404–406.

    Article  ADS  Google Scholar 

  • Mendillo, M., J. Baumgardner, & J. Wilson 1999. Observational Test for the Solar Wind Sputtering Origin ofthe Moon’s Extended Sodium Atmosphere, Icarus 137, 13–23.

    Article  ADS  Google Scholar 

  • Mendillo, M., Warell, J., Limaye, S.S., Baumgardner, J., Sprague, A.L. & J.K. Wilson 2001. Imaging the Surface of Mercury Using Ground-Based Telescopes. Planetary & Space Res. In press.

    Google Scholar 

  • McCord, T.B., Clark, RN., Hawke, B.R, McFadden L.A., Owensby P.D, Pieters, C.M. & J.B. Adams 1981. Moon- Near-Infrared Spectral Reflectance: A First Good Look. J. Geophys. Res. 86, 10883–10892.

    Article  ADS  Google Scholar 

  • McCord, T.B. & R.N. Clark (1979). The Mercury Soil: Presence of Fe2+. J. Geophys. Res. 84,7664–7668.

    Article  ADS  Google Scholar 

  • Morrison, D. 1970. Thermophysics of the Planet Mercury. Space Sci. Rev. 11,271–307.

    Article  ADS  Google Scholar 

  • Novak, R., M. Mumma, M. DiSanti, N. Dello Russo, K. Magee-Sauer, 2001. Photochemical Mapping of Ozone and Water in the Atmosphere of Mars Near the 1997 Aphelion, submitted to Icarus.

    Google Scholar 

  • Owen, T., 1966. The Composition and Surface Pressure of the Martian Atmosphere. Results from the 1965 Opposition. Ap. J. 146, 257–270.

    Article  ADS  Google Scholar 

  • Parkinson, T.D., & Hunten, D.M. 1972. Martian Dust Storm: Its Depth on 25 November 1971. Science 175, 323–327.

    Article  ADS  Google Scholar 

  • Parkinson, T.D., & Hunten, D.M. 1973. CO2 Distribution on Mars. Icarus 18, 29–53.

    Article  ADS  Google Scholar 

  • Parker, D.C., Beish, J.D., Troiani, DM., Joyce, D.P., & C.E. Hernandez 1999. Icarus 138,3–19.

    Article  ADS  Google Scholar 

  • Pettengill, G.H., R Dyce, & I. Shapiro 1967. Rotation Periods of Mercury and Mars. Astron. J. 72, 351.

    Article  ADS  Google Scholar 

  • Pieters, C.M. 1982. Copernicus Crater Central Peak—Lunar Mountain of Unique composition. Science 215, 59–61.

    Article  ADS  Google Scholar 

  • Pieters, C.M., Wilhelms, D.E. & R. Paquette. 1984. Stratigraphy at Copernicus and the Source of Olivien in the Central Peak. Lunar & Planetary Science XV, p. 643–644 abs.

    ADS  Google Scholar 

  • Potter, A.E. & T. H. Morgan 1985. Discovery of sodium in the atmosphere of Mercury, Science 229,651–653.

    Article  ADS  Google Scholar 

  • Potter, A.E. & T. H. Morgan, 1986. Potassium in the Atmosphere of Mercury. Icarus 67, 336–340.

    Article  ADS  Google Scholar 

  • Potter, A.E. & T.H. Morgan, 1990. Evidence for Magnetospheric Effects on the Sodium Atmosphere of Mercury. Science 248, 835–838.

    Article  ADS  Google Scholar 

  • Potter A. E. & T. H. Morgan, 1988. Discovery of Sodium and Potassium Vapor in the Atmosphere of the Moon. Science 241, 675–680.

    Article  ADS  Google Scholar 

  • Potter A. E. & T.H. Morgan, 1998. Coronagraphic observations of the lunar sodium exosphere near the lunar surface. J. Geophys. Res. 103,8581–8586.

    Article  ADS  Google Scholar 

  • Rizk, B., Wells, W.K., Hunten, D.M., Stoker, C.R, Freedman, R.S., Roush, T., Pollack, J.B., & Haberle, R.M. 1991. Meridional Martian Water Abundance Profiles during the 1988–1989 Season. Icarus 90, 205 213.

    ADS  Google Scholar 

  • Schorn, R.A, Spinrad, H., Moore, R.C., Smith, H.J., & Giver, L.P. 1967. High-Dispersion Spectroscopic Observations of Mars. II. The Water Vapor Variations. Ap. J. 147, 743–752.

    Article  ADS  Google Scholar 

  • Singer, R.B., Clark, R.N., McCord, T.B., Adams, J.B. & R.L. Huguenin 1979. Mars Surface Composition from Reflectance Spectroscopy. J. Geophys. Res. 84,8415–8426.

    Article  ADS  Google Scholar 

  • Sill, G.T. 1983. The Clouds of Venus: Sulfuric Acid by the Lead Chamber Process. Icarus 53,10–15.

    Article  ADS  Google Scholar 

  • Slade, M., B. Butler, & D.O. Muhleman 1992. Mercury Radar Imaging: Evidence for Polar Ice. Science 258, 635–640.

    Article  ADS  Google Scholar 

  • Spinrad, H., Munch, G., & Kaplan, L.D., 1963, The Detection of Water Vapor on Mars. Ap. J. 137, 1319–1321.

    Article  ADS  Google Scholar 

  • Smith, S.M., J. K. Wilson, J. Baumgardner, & M. Mendillo 1999. Discovery of the Distant Lunar Sodium Tail and its Enhancement Following the Leonid Meteor Shower of 1998.,” Geophys. Res. Lett., 26, 1649–1652.

    Article  ADS  Google Scholar 

  • Sprague, A. L., Kozlowski, R. W. & Hunten, D. M. 1990. Caloris Basin: An Enhanced Source for Sodium and Potassium in Mercury’s Atmosphere. Science 249, 1140–1143.

    Article  ADS  Google Scholar 

  • Sprague, A.L., Kozlowski, R.W.H., Witteborn, F.C., Cruikshank, D.P. & D.H. Wooden 1994. Mercury: Evidence for Anorthosite and Basalt from Mid-Infrared (7.3–13.5 μm) Spectroscopy. Icarus 109: 156–167.

    Article  ADS  Google Scholar 

  • Sprague, A. L. & T. L. Roush 1998a. Comparison of Laboratory Emission Spectra with Mercury Telescopic Data. Icarus 133, 174–183.

    Article  ADS  Google Scholar 

  • Sprague, A. L., R. W. H. Kozlowski, D. M. Hunten, W. K. Wells, & F. A. Grosse, 1992. The Sodium and Potassium Atmosphere of the Moon and Its Interaction with the Surface Icarus 96, 27–42.

    Google Scholar 

  • Sprague, A. L., D. M. Hunten, R. W. H. Kozlowski, F. A. Grosse, R. E. Hill, & R. L. Morris 1998c. Observations of Sodium in the Lunar Atmosphere during International Lunar Atmosphere Week, 1995, Icarus 131,372–381.

    Article  ADS  Google Scholar 

  • Sprague, A. L., W. J. Schmitt, & R.E. Hill 1998b. Mercury: Sodium Atmospheric Enhancements, Radar Bright Spots, and Visible Surface Features. Icarus 135,60–68.

    Article  ADS  Google Scholar 

  • Sprague, A.L., Hunten, D.M., Hill, R.E., Rizk, B., & Wells, W.K. 1996 Martian Water Vapor. J. Geophys. Res. 101(ElO), 23,229–23,241.

    ADS  Google Scholar 

  • Sprague, A.L., Hunten, D.M., Doose, L.A., Hill, R.A. & B. Rizk 2001. Water Vapor Abundances over Mars North High Latitude Regions: 1996–1999. Icarus, In Press.

    Google Scholar 

  • Stern S. A., & B. C. Flynn 1995. Narrow-Field Imaging of the Lunar Sodium Exosphere, Astron. J. 109,835–841.

    Article  ADS  Google Scholar 

  • Tull, R.G. 1970. High-Dispersion Spectroscopic Observations of Mars IV. The Latitude Distribution of Atmospheric Water Vapor. Icarus 13,43–57.

    Article  ADS  Google Scholar 

  • Vilas, F., M. A. Leake, & W.W. Mendell 1984. The Dependence of Reflectance spectra of Mercury on Surface Terrain. Icarus 59, 60–68.

    Article  ADS  Google Scholar 

  • Vilas, F. 1988. Surface Composition of Mercury from Reflectance Spectrophotometry. Mercury, University of Arizona Press, Vilas, F., Chapman, C. & Matthews Eds., Tucson, Arizona.

    Google Scholar 

  • Warrell J. & S. Limaye 2001. Properties of the Hermean Regolith: I. Global regolith Albedo Variation at 200 km Scale from Multicolor CCD Imaging. Planet. & Space Sci. In Press.

    Google Scholar 

  • Wilson, J., S. M. Smith, J. Baumgardner, & M. Mendillo 1999. Modeling an Enhancement of the Lunar Sodium Atmosphere and Tail during the Leonid Meteor Shower of 1998, Geophys. Res. Lett. 26, 1645–1648.

    Article  ADS  Google Scholar 

  • Young, A. T. 1975. The Clouds of Venus. J. Atmos. Sci. 32,1125.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sprague, A.L. (2003). Science of the Inner Planets From Small Ground-Based Telescopes. In: Oswalt, T.D. (eds) The Future of Small Telescopes in the New Millennium. Astrophysics and Space Science Library, vol 287/8/9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0253-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0253-0_49

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0951-8

  • Online ISBN: 978-94-010-0253-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics