Skip to main content
  • 95 Accesses

Abstract

Most of the disk systems are characterized by spiral structures. A good portion of these spiral structures can be identified as waves resonantly excited by a perturber in or pertaining to the same system. For planetary rings, this is an exterior satellite; for galactic disks, a rotating bar; for proto-stellar disks (yet to be confirmed), this would be a proto-planet. These waves, not just responsible for the present morphology of the disks, also play a dominating role on evolution of the disks. Resonance excitation is a extremely effective mechanism. A relatively weak perturbation can result in a highly non-linear responses in the disk. Therefore, non-linear theory is a necessity here. We will examine the non-linear theory of resonance excitation and discuss the applications of the theory to Saturn’s rings and disk galaxies in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bertin, G.: 2000, ‘Dynamics of Galaxies’, Cambridge U. Press, Cambridge: UK.

    MATH  Google Scholar 

  • Bertin, G. and Lin, C. C: 1996, ‘Spiral Structure in Galaxies: A Density Wave Theory’, MIT Press: Cambridge, MA.

    Google Scholar 

  • Bertin, G., Lin, C. C., Lowe, S. A., and Thurstan, R. P.: 1989a, ‘Modal approach to the morphology of spiral galaxies. I — Basic structure and astrophysical viability’, Astrophys. J. 338, 78.

    Article  MathSciNet  ADS  Google Scholar 

  • Bertin, G., Lin, C. C., Lowe, S. A., and Thurstan, R. P.: 1989b, ‘Modal Approach to the Morphology of Spiral Galaxies. II. Dynamical Mechanisms’, Astrophys. J. 338, 104.

    Article  MathSciNet  ADS  Google Scholar 

  • Blitz, L. and Spergel, D. N.: 1991, ‘Direct Evidence for a Bar at the Galactic center’, Astrophys. J. 397, 631.

    Article  ADS  Google Scholar 

  • Borderies, N., Goldreich, P., and Tremaine, S.: 1984, ‘Unsolved problems in planetary ring dynamics’, in Planetary Rings, Greenberg, R. and Brahic, A. (eds.), Tucson: University of Arizona Press, 713.

    Google Scholar 

  • Buta, R., Crocker, D. A., and Elmegreen, B. G.: 1996, ‘Barred Galaxies’, IAU Colloquium 157, ASP: San Francisco, CA.

    Google Scholar 

  • Combes, F., Mamon, G. A., Charmandaris, V.: 2000, ‘Small Galaxy Groups’, IAU Colloquium 174, ASP: San Francisco, CA.

    Google Scholar 

  • Fridman, A. M. and Gorkavyi, N. N.: 1999, ‘Physics of Planetary Rings’, Springer-Verlag: Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  • Fridman, A. M. and Khoruzhii, O. V.: 2000, Phys. Lett. A278, 199.

    ADS  Google Scholar 

  • Fridman, A. M. and Khoruzhii, O. V.: 2001, ‘Restoring the full velocity field in the gaseous disk of the spiral galaxy NGC 157’, Astron. Astrophys. 371, 583.

    Article  ADS  Google Scholar 

  • Fridman, A. M. and Polyachenko, V. L.: 1984, ‘Physics of Gravitating Systems’, Springer, New York.

    Book  Google Scholar 

  • Englmaier, P. and Shlosman, I.: 2000, ‘Density Waves inside the Inner Lindblad Resonance: Nuclear Spirals in Disk Galaxies’, Astrophys. J. 528, 677.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S.: 1978a, ‘The Velocity Dispersion in Saturn’s Rings’, Icarus 34, 227.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S.: 1978b, ‘The Formation of the Cassini Division in Saturn’s Rings’, Icarus 34, 240.

    Article  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S.: 1979, ‘The Excitation of Density Waves at the Lindblad And Corotation Resonances by an External Potential’, Astrophys. J. 233, 857.

    Article  MathSciNet  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S.: 1980, ‘Disk-Satellite Interactions’, Astrophys. J. 241, 425.

    Article  MathSciNet  ADS  Google Scholar 

  • Goldreich, P. and Tremaine, S.: 1982, ‘The Dynamics of Planetary Rings’, Ann Rev Astron. & Astrophys. 20, 249.

    Article  ADS  Google Scholar 

  • Huntley, J. M., Sanders, R. H., Roberts, W. W.: 1978, ‘Bar-Driven Spiral Waves in Disk Galaxies’, Astrophys. J. 221, 521.

    Article  ADS  Google Scholar 

  • Lin, C. C. and Shu, F. H.: 1964, ‘On the Spiral Structure of Disk Galaxies’, Astrophys. J. 140, 646.

    Article  MathSciNet  ADS  Google Scholar 

  • Lin, C. C. and Shu, F. H.: 1966, ‘On the Spiral Structure of Disk Galaxies. II. Outline of a Theory of Density Waves’, Proc. Nat. Acad. Sci. 55, 229.

    Article  ADS  Google Scholar 

  • Lindblad, B.: 1963, Stockholm Observ. Ann. 22, 3.

    ADS  Google Scholar 

  • Lin, D. C. N. and Papalozou, J.: 1986, ‘On the tidal interaction between proto-planets and the primordial solar nebula. II-Self-consistent nonlinear interaction’, Astrophys. J. 307, 395.

    Article  ADS  Google Scholar 

  • Lynden-Bell, D.: 1979, ‘On a Mechanism that Structures Galaxies’, Monthly Notices of the Royal Astron. Soc. 187, 101.

    ADS  MATH  Google Scholar 

  • Lynden-Bell, D. and Kalnajs, A. J.: 1972, ‘On the Generating Mechanism of Spiral Structure’, Monthly Notices of the Royal Astron. Soc. 157, 1.

    ADS  Google Scholar 

  • Mark, J. W.-K.: 1976, ‘On Density Waves in Galaxies. III. Wave Amplification by Stimulated Emission’, Astrophys. J. 205, 363.

    Article  ADS  Google Scholar 

  • Miyama, S. M., Tomisaka, K., Hanawa, T.: 1999, ‘Numerical Astrophysics’, Kluwer Acad. Pub., Dordrecht.

    Book  Google Scholar 

  • Sakamoto, K., Okumura, S., Minezaki, T., Kobayashi, Y., and Wada, K.: 1995, ‘Bar-Driven Gas Structure and Star Formation in the Center of M100’, Astron. J. 110, 2075.

    Article  ADS  Google Scholar 

  • Sandqvist, A., and Lindblad, P. O.: 1995, ‘Barred Galaxies and Circumnuclear Activities’, Springer-Verlag, Berlin.

    Google Scholar 

  • Sheth, K., Regan, M. W., Vogel, S. N., and Teuben, P. J.: 2000, ‘Molecular Gas, Dust, and Star Formation in the Barred Spiral NGC 5383’, Astrophys. J. 532, 221.

    Article  ADS  Google Scholar 

  • Shu, F. H.: 1984, ‘In Planetary Rings’, Greenberg, R. and Brahic, A. (eds.), U. Ariz. Press, Tucson, AR, 513.

    Google Scholar 

  • Shlosman, I., Begelman, M. C., and Frank, J.: 1990, ‘The fueling of active galactic nuclei’, Nature 345, 679.

    Article  ADS  Google Scholar 

  • Shu, F. H., Laughlin, G., Lizano, S.; Galli, D.: 2000, ‘Singular Isothermal Disks. I. Linear Stability Analysis’, Astrophys. J. 535, 190.

    Article  ADS  Google Scholar 

  • Shu, F. H., Dones, L., Lissauer, J. J. Yuan, C., and Cuzzi, J. N.: 1985b, ‘Nonlinear spiral density waves — Viscous damping’, Astrophys. J. 299, 542.

    Article  ADS  Google Scholar 

  • Shu, F. H. and Stewart, G. R.: 1985, ‘The Collisional Dynamics of Particulate Disks’, Icarus 62, 360.

    Article  ADS  Google Scholar 

  • Shu, F. H., Yuan, C., Lissauer, J. J.: 1985a, ‘Nonlinear Spiral Density Waves — An Inviscid Theory’, Astrophys. J. 291, 356.

    Article  ADS  Google Scholar 

  • Toomre, A.: 1969, ‘Group Velocity of Spiral Waves in Galatic Disks’, Astrophys. J. 158, 899.

    Article  ADS  Google Scholar 

  • Toomre, A.: 1981, in Structure and Dynamics of Normal Galaxies, Fall, S.M. and Lynden-Bell, D. (ed.), Cambridge U. Press, Cambridge, UK.

    Google Scholar 

  • Polyachenko, V: 1994, ‘Galactic Bars and Associated Structure’, in Physics of the gaseous and stellar disks of the galaxy, ASPC series, 66, King, I. R. (ed.), p 103.

    Google Scholar 

  • Yuan, C.: 1984, ‘On the ‘3 Kiloparsec Arm’ — Resonance Excitation of Linear and Nonlinear Waves by an Oval Distortion in the Central Region’, Astrophys. J. 281, 600

    Article  ADS  Google Scholar 

  • Yuan, C: 2001, ‘Resonance Excitation in Disk Systems in Astrophysics’, in Stellar Dynamics: From Classic to Modern, Ossipkov, L. P. and Nikiforov, I.I. (ed.), St. Petersburg University Press.

    Google Scholar 

  • Yuan, C. and Cassen, P.: 1994, ‘Resonantly driven nonlinear density waves in proto-stellar disk’, Astrophys. J. 437, 338.

    Article  ADS  Google Scholar 

  • Yuan, C. and Cheng, Y: 1987, in The Outer Galaxy, Blitz, L. & Lockman, J. (ed.), Springer, Berlin, 144.

    Google Scholar 

  • Yuan, C. and Cheng, Y: 1989, ‘Resonance Excitation of Spiral Density Waves in a Gaseous Disk. I — A Linear Theory, 1989, ApJ, 340, 216’, Astrophys. J. 376, 104.

    Article  MathSciNet  ADS  Google Scholar 

  • Yuan, C. and Kuo, C. L.: 1997, ‘Bar-driven Spiral Density Waves and Accretion in Gaseous Disks’, Astwphys. J. 486, 750.

    Article  ADS  Google Scholar 

  • Yuan, C., & Kuo, C. L.: 1998, ‘Spiral Structure in the Central Disks of NGC 1068 and M100’, Astwphys. J. 497, 689.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yuan, C. (2002). Resonantly Excited Non-Linear Density Waves in Disk Systems. In: Fridman, A.M., Marov, M.Y., Miller, R.H. (eds) Observational Manifestation of Chaos in Astrophysical Objects. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0247-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0247-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3945-1

  • Online ISBN: 978-94-010-0247-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics