Genesis On-board Determination of the Solar Wind Flow Regime

  • M. Neugebauer
  • J. T. Steinberg
  • R. L. Tokar
  • B. L. Barraclough
  • E. E. Dors
  • R. C. Wiens
  • D. E. Gingerich
  • D. Luckey
  • D. B. Whiteaker

Abstract

Some of the objectives of the Genesis mission require the separate collection of solar wind originating in different types of solar sources. Measurements of the solar wind protons, alpha particles, and electrons are used on-board the spacecraft to determine whether the solar-wind source is most likely a coronal hole, interstream flow, or a coronal mass ejection. A simple fuzzy logic scheme operating on measurements of the proton temperature, the alpha-particle abundance, and the presence of bidirectional streaming of suprathermal electrons was developed for this purpose. Additional requirements on the algorithm include the ability to identify the passage of forward shocks, reasonable levels of hysteresis and persistence, and the ability to modify the algorithm by changes in stored constants rather than changes in the software. After a few minor adjustments, the algorithm performed well during the initial portion of the mission.

Keywords

Depression Helium Propa Fractionation Explosive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraclough, B. L. et al.: 2003, ‘The Plasma Ion and Electron Instruments for the Genesis Mission’, Space Sci. Rev., this volume.Google Scholar
  2. Burlaga, L. F. and Ogilvie, K. W.: 1973, ‘Solar Wind Temperature and Speed’, J. Geophys. Res. 78, 2028.ADSCrossRefGoogle Scholar
  3. Burnett, D. S. et al.: 2003, ‘The Genesis Discovery Mission: Return of Solar Matter to Earth’, Space Sci. Rev., this volume.Google Scholar
  4. Galvin, A. B.: 1997, ‘Minor Ion Composition in CME-Related Solar Wind’, in N. Crooker, J. A. Joselyn and J. Feynman (eds.), Coronal Mass Ejections, Geophysical Monograph 99, Amer. Geophys. Un., Washington, DC, pp. 253.CrossRefGoogle Scholar
  5. Gloeckler, G., Fisk, L. A., Hefti, S., Schwadron, N. A., Zurbuchen, T. H., Ipavich, F. M., Geiss, J., Bochsler, P., and Wimmer-Schweingruber, R. F.: 1999, ‘Unusual Composition of the Solar Wind in the 2–3 May 1998 CME Observed with SWICS on ACE’, Geophys. Res. Lett. 26, 157.ADSCrossRefGoogle Scholar
  6. Gosling, J. T., Pizzo, V., and Bame, S. J.: 1973, ‘Anomalously Low Proton Temperatures in the Solar Wind Following Interplanetary Shock Waves: Evidence for Magnetic Bottles?’, J. Geophys. Res. 78, 2001.ADSCrossRefGoogle Scholar
  7. Gosling, J. T., Bame, S. J., Feldman, W. C., McComas, D. J., Phillips, J. L., and Goldstein, B. E.: 1993, ‘Counterstreaming Suprathermal Electron Events Upstream of Corotating Shocks in the Solar Wind beyond 2 AU: Ulysses’, Geophys. Res. Lett. 20, 2335.ADSCrossRefGoogle Scholar
  8. Gosling, J. T., Birn, J., and Hesse, M.: 1995, ‘Three-Dimensional Magnetic Reconnection and the Magnetic Topology of Coronal Mass Ejection Events’, Geophys. Res. Lett. 22, 869.ADSCrossRefGoogle Scholar
  9. Gosling, J. T., Skoug, R. M., and Feldman, W. C.: 2001, ‘Solar Wind Electron Halo Depletions at 90 deg Pitch Angles’, Geophys. Res. Lett. 28, 4155.ADSCrossRefGoogle Scholar
  10. Ho, G. C., Hamilton, D. C., Gloeckler, G., and Bochsler, P., 2000, ‘Enhanced Solar Wind 3He2+ Associated with Coronal Mass Ejections’, Geophys. Res. Lett. 27, 309.ADSCrossRefGoogle Scholar
  11. Lopez, R. E.: 1987, ‘Solar Cycle Invariance in the Solar Wind Proton Temperature Relationships’, J. Geophys. Res. 92, 11189.ADSCrossRefGoogle Scholar
  12. McComas, D. J. et al.: 1998, ‘Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer’, Space Sci. Rev. 86, 563.ADSCrossRefGoogle Scholar
  13. Neugebauer, M., Goldstein, R., and Goldstein, B. E.: 1997, ‘Features Observed in the Trailing Regions of Interplanetary Clouds from Coronal Mass Ejections’, J. Geophys. Res. 102, 19.Google Scholar
  14. Richardson, I. G. and Cane, H. V.: 1995, ‘Regions of Abnormally Low Proton Temperature in the Solar Wind (1965–1991) and Their Association with ejecta’, J. Geophys. Res. 100, 23 397.ADSCrossRefGoogle Scholar
  15. von Steiger, R., Schwadron, N. A., Fisk, L. A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R. F., and Zurbuchen, T. H.: 2000, ‘Composition of Quasi-Stationary Solar Wind Flows from Ulysses/Solar Wind Ion Composition Spectrometer’, J. Geophys. Res. 105, 27217.ADSCrossRefGoogle Scholar
  16. Zwickl, R. D., Asbridge, J. R., Bame, S. J., Feldman, W. C., Gosling, J. T., and Smith, E. J.: 1983, ‘Plasma Properties of Driver Gas Following Interplanetary Shocks Observed by ISEE-3’, in M. Neugebauer(ed.), Solar Wind Five; NASA Conference Proceedings 2280, NASA, Washington, DC, pp. 711.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. Neugebauer
    • 1
  • J. T. Steinberg
    • 2
  • R. L. Tokar
    • 2
  • B. L. Barraclough
    • 2
  • E. E. Dors
    • 2
  • R. C. Wiens
    • 2
  • D. E. Gingerich
    • 3
  • D. Luckey
    • 3
  • D. B. Whiteaker
    • 4
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Lockheed Martin AstronauticsDenverUSA
  4. 4.Raytheon Missile SystemsTucsonUSA

Personalised recommendations