Skip to main content

Part of the book series: Nato Science Series ((NAIV,volume 23))

Abstract

During the last two decades, the potential of radar remote sensing in the retrieval of the water content of the near-surface unsaturated soil zone has been explored. This water content is usually referred to as soil moisture. The inversion of radar observations into soil moisture values has been hampered by an insufficient characterization of the soil roughness. However, some studies have focused on relating temporal changes of the radar signal to hydrologic relevant information. One result is presented here, where we show that variable source areas, which are mainly responsible for runoff in a catchment, can be visualized through a principal component analysis. A second part of this paper shows how soil moisture information obtained from radar imagery can be incorporated into hydrologic models. A first example uses an extended Kalman filtering technique, which adjusts the state variables from a hydrologic model. Through this technique, one-dimensional soil moisture profiles are retrieved with high accuracy. In a second example, we show a data-assimilation method which uses both the statistics and the spatial distribution of radar-retrieved soil moisture values, to adjust the modeled soil moisture profile. This methodology enables a better modeling of the rainfall-runoff behavior of the catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grayson, R.B. and Western, A.W. (1998) Towards areal estimation of soil water content from point measurements: time and space stability of mean responseJ Hydrol.207(1–2), 68–82.

    Article  CAS  Google Scholar 

  2. Grayson, R.B., Western, A.W., Chiew, F.H.S., and Blöschl, G. (1997) Preferred states in spatial soil moisture patterns: local and nonlocal controlsWater Resour. Res.33(12), 2897–2908.

    Article  Google Scholar 

  3. Western, A.W., Grayson, R.B., Blöschl, G., and Willgoose, G.R. (1999) Observed spatial organization of soil moisture and its relation to terrain indicesWater Resour. Res.35(3), 797–810.

    Article  Google Scholar 

  4. Engman, E.T. (1995) Recent advances in remote sensing in hydrology, in R.A. Pielke Sr. and R.M. Vogel (eds.)U.S. National Report to International Union of Geodesy and Geophysics 1991–1994: Contributions in HydrologyAmerican Geophysical Union, Washington, DC, pp. 967–975.

    Google Scholar 

  5. Fung, A.K., Li, Z., and Chen, K.S. (1992) Backscattering from a randomly rough dielectric surfaceIEEE Trans. Geosc. Rein. Sens.30(2), 356–369.

    Article  Google Scholar 

  6. Fung, A.K. (1994) Microwave Scattering and Emission Models and their Applications, Artech House.

    Google Scholar 

  7. Oh, Y., Sarabandi, K., and Ulaby, F.T. (1992) An empirical model and an inversion technique for radar scattering from bare soil surfacesIEEE Trans. Geosc. Rem. Sens.30(2), 370–381.

    Article  Google Scholar 

  8. Davidson, M.W.J., Le Toan, T., Mattia, F., Satalino, G., Manninen, T., and Borgeaud, M. (2000) On the characterization of agricultural soil roughness for radar remote sensing studiesIEEE Trans. Geosc. Rein. Sens.38(2), 630–640.

    Article  Google Scholar 

  9. Pauwels, V.R.N., Hoeben, R., Verhoest, N.E.C., De Troch, F.P., and Troch, P.A. (2002) Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture valuesHydrol. Proc.16(5), 995–1013.

    Article  Google Scholar 

  10. Altese, E., Bolognani, O., Mancini, M., and Troch, P.A. (1996) Retrieving soil moisture over bare soil from ERS-I synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field dataWater Resour. Res.32(3), 653–661.

    Article  Google Scholar 

  11. Singh, A. 1989 Digital change detection techniques using remotely-sensed dataInt. J. Rem. Sens. 10(6), 989–1003.

    Article  Google Scholar 

  12. Verhoest, N.E.C., Troch, P.A., Paniconi, C., and De Troch, F.P. (1998) Mapping basin scale variable source areas from multitemporal remotely sensed observations of soil moisture behaviorWater Resour. Res.34(12), 3235–3244.

    Article  Google Scholar 

  13. Pizurica, A., Philips, W., Lemahieu, I., and Acheroy, M. (1999) Image denoising in the wavelet domain using prior spatial constraints, in:Proc. IEE Conf. on Image Processing and its applications IPA’99,Manchester, pp. 216–219.

    Google Scholar 

  14. Verhoest, N., Pizurica, A., Philips, W., and De Troch, F. (2000) The application of wavelet-based filtering techniques for retrieving bio-physical parameters from multi-temporal ERS-images, in:Proc. of the ERS-Envisat Symposium: Looking down to Earth in the New MilleniumGothenburg, Sweden, on CDROM, 182verho.pdf, 8 pp.

    Google Scholar 

  15. Hoeben, R. and Troch, P.A. (2000) Assimilation of active microwave observation data for soil moisture profile estimationWater Resour. Res.36(10), 2805–2819.

    Article  Google Scholar 

  16. Mancini, M., Hoeben, R., and Troch, P.A. (1999) Multifrequency radar observations of bare surface soil moisture content: a laboratory experimentWater Resour. Res.35(6), 1827–1838.

    Article  CAS  Google Scholar 

  17. Troch, P.A., Smith, J.A., Wood, E.F., and De Troch, F. P. (1994) Hydrologic controls of large floods in a small basin: Central Appalachian case study, JHydrol.156, 285–309.

    Article  Google Scholar 

  18. Su, Z., Troch, P.A., and De Troch, F.P. (1997) Remote sensing of soil moisture using EMAC/ESAR dataInt. J. Rem. Sens.18(10), 2105–2124.

    Article  Google Scholar 

  19. Beven, K.J. and Kirkby, M.J. (1979) A physically-based, variable contributing area model of basin hydrologyHydrol. Sci. Bull.24(1), 43–69.

    Article  Google Scholar 

  20. Famiglietti, J.S. and Wood, E.F. (1994) Multiscale modeling of spatially variable water and energy balance processesWater Resour. Res.30(11), 3061–3078.

    Article  Google Scholar 

  21. Peters-Lidard, C., Zion, M., and Wood, E.F. (1997) A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processesJ. Geophys. Res.102(D4), 4303–4324.

    Article  Google Scholar 

  22. Pauwels, V. and Wood, E.F. (1999) A soil-vegetation-atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes, 2, Application and validationJ. Geoph. Res. 104(1)22), 27,823–27,839.

    Google Scholar 

  23. Pauwels, V. and Wood, E. F. (2000) The importance of classification differences and spatial resolution of land cover data in the uncertainty in model results over boreal ecosystemsJ. Hydromet.1(3), 255–266.

    Article  Google Scholar 

  24. Houser, P.R., Shuttleworth, W.J., Famiglietti,.I.S., Gupta, H.V., Syed, K.H., and Goodrich, D.C. (1998) Integration of soil moisture remote sensing and hydrologic modeling using data assimilationWater Resour. Res.34(12), 3405–3420.

    Article  Google Scholar 

  25. Pauwels, V.R.N., Verhoest, N.E.C., and De Troch, F.P. (2001 a) The effect of changing stream levels on the water table configuration through an analytical solution of the Boussinesq-equation, Advances in Water Resources, submitted.

    Google Scholar 

  26. Stauffer, D.R. and Seaman, N.L. (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model, Part I: experiments with synoptic-scale dataMonthly Weather Rev.118(6), 1250–1277.

    Article  Google Scholar 

  27. Pauwels, V.R.N., Hoeben, R., Verhoest, N.E.C., and De Troch, F.P. (2001 b), The importance of spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilationJ. Hydrol.251(1–2), 88–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Detroch, F.P., Verhoest, N.E.C., Pauwels, V.R.N., Hoeben, r. (2003). Assessing the Applicability of Hydrologic Information from Radar Imagery. In: Harmancioglu, N.B., Ozkul, S.D., Fistikoglu, O., Geerders, P. (eds) Integrated Technologies for Environmental Monitoring and Information Production. Nato Science Series, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0231-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0231-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1399-7

  • Online ISBN: 978-94-010-0231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics