Skip to main content

Birth of ‘human-specific’ genes during primate evolution

  • Chapter
Origin and Evolution of New Gene Functions

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

Abstract

Humans and other Anthropoids share very similar chromosome structure and genomic sequence as seen in the 98.5% homology at the DNA level between us and Great Apes. However, anatomical and behavioral traits distinguish Homo sapiens from his closest relatives. I review here several recent studies that address the issue by using different approaches: large-scale sequence comparison (first release) between human and chimpanzee, characterization of recent segmental duplications in the human genome and analysis of exemplary gene families. As a major breakthrough in the field, the heretical concept of ‘human-specific’ genes has recently received some supporting data. In addition, specific chromosomal regions have been mapped that display all the features of ‘gene nurseries’ and could have played a major role in gene innovation and speciation during primate evolution. A model is proposed that integrates all known molecular mechanisms that can create new genes in the human lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G., A.-C. Svensson, N. Setterblad & L. Rask, 1998. Retroelements in the human MHC class II region. Trends Genet. 14: 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, P., 1992. Evolution and environment in the Hominoidea. Nature 360: 641–646.

    Article  PubMed  CAS  Google Scholar 

  • Apoil, P.-A., F. Roubinet, S. Despiau, R. Mollicone, R. Oriol & A. Blancher, 2000. Evolution of α2-fucosyltransferase genes in primates: relation between an intronic Alu-Y element and red cell expression of AB H antigens. Mol. Biol. Evol. 17: 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Avner, P. & E. Heard, 2001. X-chromosome inactivation: counting, choice and initiation. Nature Genetics 2: 59–78.

    Article  CAS  Google Scholar 

  • Bailey, J.A., A.M. Yavor, H.F. Massa, B.J. Trask & E.E. Eichler, 2001. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11: 1005–1017.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J.A., A.M. Yavor, L. Viggiano, D. Misceo, J.E. Horvath, N. Archidiacono, S. Schwartz, M. Rocchi & E.E. Eichler, 2002. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 70: 83–100.

    Article  PubMed  CAS  Google Scholar 

  • Batzer, M.A. & P.L. Deininger, 2002. Alu repeats and human genomic diversity. Nature Reviews Genet. 3: 370–379.

    Article  CAS  Google Scholar 

  • Bergen, A.W., M. Pratt, P.T. Mehlman & D. Goldman, 1998. Evolution of RPS4Y. Mol. Biol. Evol. 15: 1412–1419.

    Article  PubMed  CAS  Google Scholar 

  • Betrán, E., W. Wang, L. Jin & M. Long, 2002. Evolution of the Phosphoglycerate muíase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol. 19: 654–663.

    Article  PubMed  Google Scholar 

  • Bishop, D.V.M., 2002. Putting language genes in perspective. Trends Genet. 18:57–59.

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt, J.C., F. Presse, C. Arias, C. Peto, J. Vaughan, J.L. Nahon, W. Vale & P.E. Sawchenko, 1992. The melanin-concentrating hormone system of the rat brain: an immuno-and hybridization histochemical characterization. J. Comp. Neurol. 319:218–245.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J.D., 1997. LINEs and Alus — the polyA connection. Nature Genet. 16: 6–7.

    Article  PubMed  CAS  Google Scholar 

  • Boissinot, S., Y, Tan, S.-K. Shyue, H. Schneider, I. Sampaio, K. Neiswanger, D. Hewett-Emmett & W.-H. Li, 1998. Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proc. Natl. Acad. Sci. USA 95: 13749–13754.

    Article  PubMed  CAS  Google Scholar 

  • Boissinot, S., P. Chevret & A.V. Furano, 2000. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 17: 915–928.

    Article  PubMed  CAS  Google Scholar 

  • Borsu, L., F. Presse & J.L. Nahon, 2000. The AROM gene: spliced mRNAs encoding new DNA/RNA binding proteins are transcribed from the opposite strand of the melanin-concentrating hormone gene in mammals. J. Biol. Chem. 275: 40576–40587.

    Article  PubMed  CAS  Google Scholar 

  • Breton, C., F. Presse, G. Hervieu & J.L. Nahon, 1993a. Structure and regulation of the mouse melanin-concentrating hormone mRNA and gene. Mol. Cell. Neurosci. 4: 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Breton, C., M. Schorpp & J.L. Nahon, 1993b. Isolation and characterization of the human melanin-concentrating hormone gene and a variant gene. Mol. Brain. Res. 18: 297–310.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J., 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115–134.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J. & S.J. Gould, 1992. On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc. Natl. Acad. Sci. USA 89: 10706–10710.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, C.-H., H. Schneider, M.P.C. Schneider, I. Sampaio, C. Meireles, J.L. Slightom, D.L. Gumucio & M. Goodman, 1996. Reduction of two functional y-globin genes to one: an evolutionary trend in New World monkeys (infraorder Platyrrhini). Proc. Natl. Acad. Sci. USA 93: 6510–6515.

    Article  PubMed  CAS  Google Scholar 

  • Chou, H.-H., H. Takematsu, S. Diaz, J. Iber, E. Nickerson, K.L. Wright, E.A. Muchmore, D.L. Nelson, S.T. Warren & A. Varki, 1998. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA 95: 11751–11756.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D.A., P.P. Mitra & S.S.-H. Wang, 2001. Scalable architecture in mammalian brains. Nature 411: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Courseaux, A. & J.L. Nahon, 2001. Birth of two chimeric genes in the Hominidae lineage. Science 291: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  • Courseaux, A., F. Richard, J. Grosgeorge, C. Ortola, A. Viale, C. Turc-Carel, B. Dutrillaux, P. Gaudray & J.L. Nahon, 2003. Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome Res. (in press).

    Google Scholar 

  • DeLisi, L.E., N.J. Craddock, S. Detera-Wadleigh, T. Foroud, P. Gejman, J.L. Kennedy, C. Lendon, F. Macciardi, P. McKeon, L. Mynett-Johnson, J.L Nürnberger Jr., A. Paterson, S. Schwab, C. Van Broeckhoven, D. Wildenauer & T.J. Crow, 2000. Update on chromosomal locations for psychiatric disorders, Report of the Interim Meeting of Chromosome Workshop Chairpersons from the Vllth World Congress of Psychiatric Genetics, Monterey, CA, October 14-18,1999. Am. J. Med. Genet. (Neuropsychiatrie Genet.) 96: 434–449.

    Article  PubMed  CAS  Google Scholar 

  • Dhellin, O., J. Maestre & T. Heidmann, 1997. Functional difference between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcriptase. EMBO J. 16: 6590–6602.

    Article  PubMed  CAS  Google Scholar 

  • Dierick, H.A., J.F.B. Mercer & T.W. Glover, 1997. A phosphoglycerate mutase brain isoform (PGAM1) pseudogene is localized within the human Menkes disease gene (ATP7A). Gene 198: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Y.-C., H.-C. Chi, D.L. Grady, A. Morishima, J.R. Kidd, K.K. Kidd, P. Flodman, M.A. Spence, S. Schuck, J.M. Swanson, Y-P. Zhang & R.K. Moyzis, 2002. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. USA 99: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Duboulle, D. & A.S. Wilkins, 1998. The evolution of “bricolage”. Trends Genet. 14: 54–58.

    Article  Google Scholar 

  • Dutrillaux, B., 1979. Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Human. Genet. 48: 251–314.

    Article  CAS  Google Scholar 

  • Eichler, E.E., 1998. Masquerading repeats: paralogous pitfalls of the human genome. Genome Res. 8: 758–762.

    PubMed  CAS  Google Scholar 

  • Eichler, E.E., 2001. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17: 661–669.

    Article  PubMed  CAS  Google Scholar 

  • Emanuel, B.S. & T.H. Shaikh, 2001. Segmental duplications: an “expanding” role in genomic instability and disease. Nature Rev. Genet. 2: 791–800.

    Article  PubMed  CAS  Google Scholar 

  • Emi, M., A. Horii, N. Tornita, T. Nishide, M. Ogawa, T. Mori & K. Matsubara, 1988. Overlapping two genes in human DNA: a salivary amylase gene overlaps with a gamma-actin pseudogene that carries an integrated human endogenous retroviral DNA. Gene 62: 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Enard, W., P. Khaitovich, J. Klose, S. Zöllner, F. Heissig, P. Giavalisco, K. Nieselt-Struwe, E. Muchmore, A. Varki, R. Ravid, G.M. Doxiadis, R.E. Bontrop & S. Pääbo, 2002a. Intra-and interspecific variation in primate gene expression patterns. Science 296: 340–343.

    Article  PubMed  CAS  Google Scholar 

  • Enard, W., M. Przeworski, S.E. Fisher, C.S.L. Lai, V. Wiebe, T. Kitano, A.P. Monaco & S. Pääbo, 2002b. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418: 869–872.

    Article  PubMed  CAS  Google Scholar 

  • Erdmann, V.A., M. Szymanski, A. Hochberg, N. de Groot & J. Barciszewski, 1999. Collection of mRNA-like non-coding RNAs. Nucleic Acids Res. 27: 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Esnault, C., J. Maestre & T. Heidmann, 2000. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24: 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Frevel, M.A.E., J.J. Hornberg & A.E. Reeve, 1999. A potential imprint control element identification of a conserved 42 bp sequence upstream of H19. Trends Genet. 15: 216–218.

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama, A., H. Watanabe, A. Toyoda, T.D. Taylor, T. Itoh, S.-F. Tsai, H.-S. Park, M.L. Yaspo, H. Lehrach, Z. Chen, G. Fu, N. Saitou, K. Osoegawa, P.J. de Jong, Y. Suto, M. Hattori & Y. Sakaki, 2002. Construction and analysis of a human-chimpanzee comparative clone map. Science 295: 131–134.

    Article  PubMed  Google Scholar 

  • Gagneux, P. & A. Varki, 2001. Genetic differences between humans and Great Apes. Mol. Phylogenet. Evol. 18: 2–13.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, A., 1998. Which of our genes make us human? Science 281: 1432–1434.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, A., 2002a. In search of the first Hominids. Science 295: 1214–1219.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, A., 2002b. Humans’ head start: new views of brain evolution. Science 296: 835–837.

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves, I., L. Duret & D. Mouchiroud, 2000. Nature and structure of human genes that generate retropseudogenes. Genome Res. 10: 672–678.

    Article  PubMed  Google Scholar 

  • Goodman, M., 1999. Molecular evolution ‘99. The genomic record of humankind’s evolutionary roots. Am. J. Hum. Genet. 64: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Gratacòs, M., M. Nadal, R. Martin-Santos, M.A. Pujana, J. Gago, B. Peral, L. Armengol, I. Ponsa, R. Miró, A. Bulbena & X. Estivili, 2001. A polymorphic genomic duplication on human chromosome 15 is a susceptibility factor for panic and phobic disorders. Cell 106:367–379.

    Article  PubMed  Google Scholar 

  • Hacia, J.G., 2001. Genome of the apes. Trends Genet. 17: 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Holbrook, J.D., G.M. Birdsey, Z. Yang, M.W. Bruford & C.J. Danpure, 2000. Molecular adaptation of alanine: glyoxylate aminotransferase targeting in primates. Mol. Biol. Evol. 17: 387–100.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A.L., 1995. Origin and evolution of HLA class I pseudogenes. Mol. Biol. Evol. 12: 247–258.

    PubMed  CAS  Google Scholar 

  • IHGSC, 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  Google Scholar 

  • Jacobs, G.H., M. Neitz, J.F. Deegan & J. Neitz, 1996. Trichromatic colour vision in New World monkeys. Nature 382: 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Jauch, A., J. Wienberg, R. Stanyon, N. Arnold, S. Tofanelli, T. Ishida & T. Cremer, 1992. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc. Natl. Acad. Sci. USA 89: 8611–8615.

    Article  PubMed  CAS  Google Scholar 

  • Ji, Y., E.E. Eichler, S. Schwartz & R.D. Nicholls, 2000. Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res. 10: 597–610.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M.E., L. Viggiano, J.A. Bailey, M. Abdul-Rauf, G. Goodwin, M. Rocchi & E.E. Eichler, 2001. Positive selection of a gene family during the emergence of humans and African apes. Nature 413: 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Kaessmann, H. & S. Pääbo, 2002. The genetical history of humans and the great apes. J. Intern. Med. 251: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Kapranov, P., S.E. Cawley, J. Drenkow, S. Bekiranov, R.L. Strausberg, S.P.A. Fodor & T.R. Gingeras, 2002. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296: 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R.F., C. Ross & B.A. Williams, 1997. Anthropoid origins. Science 275: 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian Jr., H.H. & J.V. Moran, 1998. The impact of L1 retrotransposons on the human genome. Nature Genet. 19: 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, R.L. & M.I. Kuroda, 2000. Noncoding RNA genes in dosage compensation and imprinting. Cell 103: 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C.P., 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev. Camb. Philos. Soc. 73:79–123.

    Article  PubMed  CAS  Google Scholar 

  • Klonisch, T., C. Froehlich, F. Tetens, B. Fischer & S. Hombach-Klonisch, 2001. Molecular remodeling of members of the relaxin family during primate evolution. Mol. Biol. Evol. 18: 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C.S.L., S.E. Fisher, J.A. Hurst, F. Vargha-Khadem & A.P. Monaco, 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413: 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, S., L. Bürglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, D. Le Paslier, J. Frézal, D. Cohen, J. Weissenbach, A. Munnich & J. Melki, 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Lehner, B., G. Williams, R.D. Campbell & C.M. Sanderson, 2002. Antisense transcripts in the human genome. Trends Genet. 18: 63–65.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, B., 1995. Genes for SMA: multum in parvo. Cell 80: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., 2000. A new function evolved from gene fusion. Genome Res. 10: 1655–1657.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Lundin, L.G., 1993. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. & J.S. Conery, 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey, J.R. & K. Thomas, 1987. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326: 501–505.

    Article  PubMed  CAS  Google Scholar 

  • McCarrey, J.R., M. Kumari, M.J. Aivaliotis, Z. Wang, P. Zhang, F. Marshall & J.L. Vandeberg, 1996. Analysis of the cDNA and encoded protein of the human testis-specific PGK-2 gene. Dev. Gen. 19: 321–332.

    Article  CAS  Google Scholar 

  • Marsh, D.J., D.T. Weingarth, D.E. Novi, H.Y. Chen, M.E. Trumbauer, A.S. Chen, X.-M. Guan, M.M. Jiang, Y Feng, R.E. Camacho, Z. Shen, E.G. Frazier, H. Yu, J.M. Metzger, S.J. Kuca, L.P. Shearman, S. Gopal-Truter, D.J. MacNeil, A.M. Strack, D.E. Maclntyre, L.H.T. Van der Ploeg & S. Qian, 2002. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc. Natl. Acad. Sci. USA 99: 3240–3245.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R.D., 1993. Primate origins: plugging the gaps. Nature 363: 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Maslow, S. & K. Sneppen, 2002. Specificity and stability in topology of protein networks. Science 296: 910–913.

    Article  Google Scholar 

  • Mattick, J.S. & M.J. Gagen, 2001. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol. 18: 1611–1630.

    Article  PubMed  CAS  Google Scholar 

  • McConkey, E.H. & M. Goodman, 1997. A human genome evolution project is needed. Trends Genet. 13: 350–351.

    Article  PubMed  CAS  Google Scholar 

  • Messier, W. & C.-B. Stewart, 1997. Episodic adaptive evolution of primate lysozymes. Nature 385: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Mighell, A.J., A.F. Markham & P.A. Robinson, 1997. Alu sequences. FEBS Lett. 417: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C.L., M. Burmeister & R.C. Thompson, 1998. Antisense expression of the human pro-melanin-concentrating hormone genes. Brain Res. 803: 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Moffat, A.S., 2002. New fossils and a glimpse of evolution. Science 295: 613–615.

    Article  PubMed  CAS  Google Scholar 

  • Moran, J.V., R.J. DeBarardinis & H.H. Kazazian Jr., 1999. Exon shuffling by LI retrotransposition. Science 283: 1530–1534.

    Article  PubMed  CAS  Google Scholar 

  • Müller, S., R. Stanyon, P. Finelli, N. Archidiácono & J. Wienberg, 2000. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution. Proc. Natl. Acad. Sci. USA 97: 206–211.

    Article  PubMed  Google Scholar 

  • Nahon, J.L., 1994. The melanin-concentrating hormone: from the peptide to the gene. Crit. Rev. Neurobiol. 8: 221–262.

    PubMed  CAS  Google Scholar 

  • Nahon, J.L., F. Presse, J.C. Bittencourt, P. Sawchenko & W. Vale, 1989. The rat melanin-concentrating hormone mRNA encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology 125: 2056–2065.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, J., D. Thomas & D.S. Hogness, 1986. Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 232: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., X. Gu & T. Sitnikova, 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. 94: 7799–7806.

    Article  PubMed  CAS  Google Scholar 

  • Nekrutenko, A. & W.-H. Li, 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17:619–621.

    Article  PubMed  CAS  Google Scholar 

  • Normile, D., 2001. Comparative genomics: gene expression differs in human and chimp brains. Science 292: 44–45.

    Article  PubMed  CAS  Google Scholar 

  • Pedeutour, F., C. Szpirer & J.L. Nahon, 1994. Assignment of the human pro-melanin-concentrating hormone gene (PMCH) to chromosome 12q23-q24 and two variant genes (PMCHL1 and PMCHL2) to chromosome 5p14 and 5q12-q13. Genomics 19: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Penny, D., R.P. Murray-Mcintosh & M.D. Hendy, 1998. Estimating times of divergence with a change of rate: the orangutan/african ape divergence. Mol. Biol. Evol. 15: 608–610.

    Article  PubMed  CAS  Google Scholar 

  • Presse, F., B. Cardona, L. Borsu & J.L. Nahon, 1997. Lithium increases melanin-concentrating hormone mRNA stability and inhibits tyrosine hydroxylase gene expression in PC12 cells. Mol. Brain Res. 52: 270–283.

    Article  PubMed  CAS  Google Scholar 

  • Qu, D., D.S. Ludwig, S. Gammeltoft, M. Piper, M.A. Pelleymounter, M.J. Cullen, W.F. Mathes, J. Przupek, R. Kanarek & E. Maratos-Flier, 1996. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380: 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, S.I., 1990. Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res. Rev. 15: 267–294.

    Article  PubMed  CAS  Google Scholar 

  • Rouquier, S., A. Blancher & D. Giorgi, 2000. The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci. 97: 2870–2874.

    Article  PubMed  CAS  Google Scholar 

  • Samonte, R.V. & E.E. Eichler, 2002. Segmental duplications and the evolution of the primate genome. Nature Rev. 3: 1–10.

    Google Scholar 

  • Samuelson, L.C., K. Wiebauer, D.L. Gumucio & M.H. Meisler, 1988. Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene. Nucleic Acids Res. 16:8261–8275.

    Article  PubMed  CAS  Google Scholar 

  • Samuelson, L.C., R.S. Phillips & L.J. Swanberg, 1996. Amylase gene structures in primates: retroposon insertions and promoter evolution. Mol. Biol. Evol. 13: 767–779.

    Article  PubMed  CAS  Google Scholar 

  • Schaner, P., N. Richards, A. Wadhwa, I. Aksentijevich, D. Kastner, P. Tucker & D. Gumucio, 2001. Episodic evolution of pyrin in primates: human mutations recapitulate ancestral amino acid states. Nature Gene. 27: 318–321.

    Article  CAS  Google Scholar 

  • Semendeferi, K., A. Lu, N. Schenker & H. Damasio, 2002. Humans and great apes share a large frontal cortex. Nature Neurosci. 5: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, M., N.A. Tritos, B.B. Lowell, J.S. Flier & E. Maratos-Flier, 1998. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396: 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Slack, F. & G. Ruvkun, 1997. Temporal pattern formation by heterochronic genes. Annu. Rev. Genet. 31: 611–634.

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz, P. & J.R. Lupski, 2002. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18: 74–82.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, C.F., 2001. An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411: 193–195.

    Article  PubMed  CAS  Google Scholar 

  • Storz, G., 2002. An expanding universe of noncoding RNAs. Science 296: 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R.C. & S.J. Watson, 1990. Nucleotide sequence and tissue-specific expression of the rat melanin concentrating hormone gene. DNA Cell Biol. 9: 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, T.G., C.J. DiDonato, L.R. Simard, S.E. Ingraham, A.H.M. Burghes, T.O. Crawford, C. Rochette, J.R. Mendell & J.J. Wasmuth, 1995. A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nature Genet. 9: 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, T.M., J.J. Lozano, N. Loukili, R. Carrió, F. Serras, B. Cormand, M. Valeri, V.M. Díaz, J. Abril, M. Burset, J. Merino, A. Macaya, M. Coraminas & R. Guigó, 2000. Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. Genome Res. 10: 1743–1756.

    Article  PubMed  CAS  Google Scholar 

  • Tritos, N.A. & E. Maratos-Flier, 1999. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides 33: 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Ulvsbäck, M. & Ä. Lundwall, 1997. Cloning of the semenogelin II gene of the rhesus monkey. Duplications of 360 bp extend the coding region in man, rhesus monkey and baboon. Eur. J. Biochem. 245: 25–31.

    Article  PubMed  Google Scholar 

  • Venter, J.C., M.D. Adams, E.W. Myers et al., 2001. The sequence of the human genome. Science 291: 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Viale, A., Z. Yao, C. Breton, F. Pedeutour, A. Coquerel, D. Jordan & J.L. Nahon, 1997. The melanin-concentrating hormone gene in human: flanking region analysis, fine chromosome mapping and tissue-specific expression. Mol. Brain Res. 46: 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Viale, A., C. Ortola, F. Richard, P. Vernier, F. Presse, S. Schilling, B. Dutrillaux & J.L. Nahon, 1998. Emergence of a brain-expressed variant melanin-concentrating hormone gene during higher primate evolution: a gene “in search of a function”. Mol. Biol. Evol. 15: 196–214.

    Article  PubMed  CAS  Google Scholar 

  • Viale, A., A. Courseaux, F. Presse, C. Ortola, C. Breton, D. Jordan & J.L. Nahon, 2000. Structure and expression of the variant melanin-concentrating hormone genes: only PMCHL1 is transcribed in the developing human brain and encodes a putative protein. Mol. Biol. Evol. 17: 1626–1640.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff, G.J., W. Wang & C.-I. Wu, 2000. Rapid evolution of male reproductive genes in the descent of man. Nature 403: 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Xu, E.Y., F.L. Moore & R.A.R. Pera, 2001. A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans. Proc. Natl. Acad. Sci. 98: 7414–7419.

    Article  PubMed  CAS  Google Scholar 

  • Yoder, A.D. & Z. Yang, 2000. Estimation of primate speciation dates using local molecular clocks. Mol. Biol. Evol. 17: 1081–1090.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nahon, JL. (2003). Birth of ‘human-specific’ genes during primate evolution. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics