Skip to main content

The EBG system of E. coli: origin and evolution of a novel ß-galactosidase for the metabolism of lactose

  • Chapter

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

Abstract

The EBG system of E. coli has served as a model for the evolution of novel functions. This paper reviews the experimental evolution of the catabolism of ß-galactoside sugars in strains of E. coli that carry deletions of the classical lacZ ß-galactosidase gene. Evolution of the ebgA encoded Ebg ß-galactosidase for an expanded substrate range, evolution of the ebgR encoded Ebg repressor for sensitivity to an expanded range of inducers, the amino acid replacements responsible for those changes, and the evolutionary potential of the system are discussed. The EBG system has also served as a model for studying the detailed catalytic consequences of experimental evolution at the physical-chemical level. The analysis of free-energy profiles for the wildtype and all of the various evolved Ebg enzymes has permitted rejection of the Albery-Knowles hypothesis that relates likely changes in free-energy profiles to evolutionary change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albery, W.J. & J.R. Knowles, 1976. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15: 5631–5640.

    Article  PubMed  CAS  Google Scholar 

  • Bennet, A.J. & M.L. Sinnott, 1986. Complete kinetic isotope effect description of transition states for acid-catalyzed hydrolyses of methyl α-and ²-glucopyranosides. J. Am. Chem. Soc. 108: 7287–7294.

    Article  CAS  Google Scholar 

  • Burton, J. & M.L. Sinnott, 1983. Catalytic consequences of experimental evolution. Part 1. Catalysis by the wild-type second β-galactosidase (ebgo) of Escherichia coli: a comparison with the lacZ enzyme. J. Chem. Soc. Perkin Trans. II: 359–364.

    Google Scholar 

  • Calugaru, S.V., B.G. Hall & M.L. Sinnott, 1995. Catalysis by the large subunit of the second β-galactosidase of Escherichia coli in the absence of the small subunit. Biochem. J. 312: 281–286.

    PubMed  CAS  Google Scholar 

  • Calugaru, S.V., S. Krishnan, C.J. Chany II, B.G. Hall & M.L. Sinnott, 1997. Larger increases in sensitivity to paracatalytic inactivation than in catalytic competence during experimental evolution of the second β galactosidase of Escherichia coli. Biochem. J. 325: 117–121.

    PubMed  CAS  Google Scholar 

  • Campbell, J., J. Lengyel & J. Langridge, 1973. Evolution of a second gene for β-galactosidase in Escherichia coli. Proc. Nat. Acad. Sci. USA 70: 1841–1845.

    Article  PubMed  CAS  Google Scholar 

  • Dykhuizen, D.E., A.M. Dean & D.L. Hartl, 1987. Metabolic flux and fitness. Genetics 115: 25–31.

    PubMed  CAS  Google Scholar 

  • Elliott, A.C., S. K. M.L. Sinnott, P.J. Smith, J. Bommuswamy, Z. Guo, B.G. Hall & Y. Zhang, 1992. The catalytic consequences of experimental evolution. Studies on the subunit structure of second (ebg) β-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions. Biochem. J. 282: 155–164.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1976. Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebgo) and evolved (ebg+) enzymes. J. Mol. Biol. 107: 71–84.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1978a. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for EBG enzyme in E. coli. Genetics 89: 453–465.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1978b. Regulation of newly evolved enzymes. IV Directed evolution of the ebg repressor. Genetics 90: 673–691.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1981. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry 20: 4042–4049.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1982a. Evolution of a regulated operon in the laboratory. Genetics 101:335–344.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1982b. Transgalactosylation activity of ebg β-galactosidase synthesizes allolactose from lactose. J. Bacteriol. 150: 132–140.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1995a. Adaptive mutations in E. coli as a model for the multiple-mutational origins of tumors. Proc. Nat. Acad. Sci. USA 92: 5669–5673.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1995b. Evolutionary potential of the ebgA gene. Mol. Biol. Evol. 12:514–517.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1997. On the specificity of adaptive mutations. Genetics 145: 39–14.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1999a. Experimental evolution of Ebg enzyme provides clues about the evolution of catalysis and to evolutionary potential. FEMS Microbiol. Lett. 174: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1999b. The spectra of spontaneous growth-dependent and adaptive mutations in ebgR. J. Bacteriol. 181:1149–1155.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1999c. Toward an understanding of evolutionary potential. FEMS Microbiol. Lett. 178: 1–6.

    Article  CAS  Google Scholar 

  • Hall, B.G., 2001a. Phylogenetic Trees Made Easy: A How-To Manual for Molecular Biologists. Sinauer Assoc, Sunderland, MA.

    Google Scholar 

  • Hall, B.G., 2001b. Predicting evolutionary potential. I. Predicting the evolution of a lactose-PTS system in Escherichia coli. Mol. Biol. Evol. 18: 1389–1400.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G. & N.D. Clarke, 1977. Regulation of newly evolved enzymes. III. Evolution of the ebg repressor during selection for enhanced lactase activity. Genetics 85: 193–201.

    PubMed  CAS  Google Scholar 

  • Hall, B.G. & D.L. Hartl, 1974. Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli. Genetics 76: 391–400.

    PubMed  CAS  Google Scholar 

  • Hall, B.G. & D.L. Hartl, 1975. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics 81: 427–435.

    CAS  Google Scholar 

  • Hall, B.G. & H.S. Malik, 1998. Determining the evolutionary potential of a gene. Mol. Biol. Evol. 15: 514–517.

    Google Scholar 

  • Hall, B.G. & T. Zuzel, 1980. Evolution of a new enzymatic function by recombination within a gene. Proc. Natl. Acad. Sci. USA 77: 3529–3533.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., P.W. Betts & J.C. Wootton, 1989. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics 123: 635–648.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., M. Murray, S. Osborne & M.L. Sinnott, 1983. The catalytic consequences of experimental evolution. Part III. Construction of reaction profiles for hydrolysis of lactose by ebg0, ebga, and ebgb enzymes via measurements of the enzyme-catalyzed exchange of galactose-l-180 by 13C NMR spectroscopy. J. Chem. Soc. Perkin Trans. II: 1595–1598.

    Google Scholar 

  • Hartl, D.L. & B.G. Hall, 1974. A second naturally occurring ß-galactosidase in E. coli. Nature 248: 152–153.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J.R & F. Ronquist, 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Jobe, A. & S. Bourgeois, 1974. lac repressor-operator interactions. VI. The natural inducer of the lac Operon. J. Mol. Biol. 69: 397–408.

    Article  Google Scholar 

  • Krishnan, S., B.G. Hall & M.L. Sinnott, 1995. Catalytic consequences of experimental evolution: catalysis by a ‘:third-generation’ evolvant of the second β-galactosidase of Escherichia cold, ebgabcde, and by ebgabcd, a ‘:second-generation’ evolvant containing two supposedly ‘:kinetically silent’ mutations. Biochem. J. 312: 971–977.

    PubMed  CAS  Google Scholar 

  • Li, B.F.L., S. Osborne & M.L. Sinnott, 1983. Catalytic consequences of experimental evolution. Part 2. Rate-limiting degalactosylation in the hydrolysis of Aryl β-D-galactopyranosides by the experimental evolvants ebga and ebgb. J. Chem. Soc. Perkin Trans. II: 365–369.

    Google Scholar 

  • Li, B.F.L., D. Holdup, C.A. Morton & M. Sinnott, 1989. The catalytic consequences of experimental evolution. Transition state structure during catalysis by the evolved β-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event. Biochem. J. 260: 109–114.

    PubMed  CAS  Google Scholar 

  • Mau, B. & M. Newton, 1997. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. J. Comput. Graphical Statist. 6: 122–131.

    Google Scholar 

  • Mau, B., M. Newton & B. Larget, 1999. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Rannala, B. & Z.H. Yang, 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43: 304–311.

    Article  PubMed  CAS  Google Scholar 

  • Rolseth, S.J., V.A. Fried & B.G. Hall, 1980. A mutant ebg enzyme that converts lactose into an inducer of the lac Operon. J. Bacteriol. 142: 1036–1039.

    PubMed  CAS  Google Scholar 

  • Sanger, F., A.R. Coulson, B.G. Barrell, A.J.H. Smith & B.A. Roe, 1980. Cloning in single stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143: 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, K., B.G. Hall & M.L. Sinnott, 1995. The catalytic consequences of experimental evolution. Catalysis by a ‘:third generation’ evolvant of the second ß-galactosidase of Escherichia coli, Ebgabcde and Ebgabcd, a ‘:second generation’ evolvant containing two supposedly ‘:kinetically silent’ mutations. Biochem. J. 312: 971–977.

    Google Scholar 

  • Srinivasan, K., A. Konstantindis, M.L. Sinnott & B.G. Hall, 1993. Large changes of transition state structure during experimental evolution of an enzyme. Biochem. J. 291: 15–17.

    PubMed  Google Scholar 

  • Stokes, H.W. & B.G. Hall, 1981. Topological repression of gene activity by a transposable element. Proc. Nat. Acad. Sci. USA 81:6115–6119.

    Article  Google Scholar 

  • Stokes, H.W. & B.G. Hall, 1985. Sequence of the ebgR gene of Escherichia coli: evidence that the EBG and LAC operons are descended from a common ancestor. Mol. Biol. Evol. 2: 4478–483.

    Google Scholar 

  • Stokes, H.W., P.W. Betts & B.G. Hall, 1985. Sequence of the ebgA gene of Escherichia coli: comparison with the lacZ gene. Mol. Biol. Evol. 2: 469–477.

    PubMed  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmou-gin & D.G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid. Res. 25: 4876–4882.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hall, B.G. (2003). The EBG system of E. coli: origin and evolution of a novel ß-galactosidase for the metabolism of lactose. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics