Skip to main content

The universe of exons revisited

  • Chapter
  • 473 Accesses

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

Abstract

We study the distribution of exons in eukaryotic genes to determine whether one can detect the reuse of exon sequences and to use the frequency of such reuse to estimate how many ancestral exon sequences there might have been. We use two databases of exons. One contained 56,276 internal exons from putatively unrelated genes (less than 20% sequence identity) and the second contained 8917 internal exons from regions of these genes that are homologous and colinear with prokaryotic genes; these are ancient conserved regions (ACRs). At the 95% significance level we find 3500 exon-sequence matches in the large database and 500 matches in the ACR database. These matches correspond to groups of similar sequences. The size-rank relationship for these groups follows a power law, the size falling off as the inverse square root of the rank. This form of the power law distribution leads us to make an estimate for the size of a possible universe of ancestral exons. Using the data corresponding to the ACR regions, that universe is estimated to be about 15,000–30,000 in size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Benson, D.A., M.S. Boguski, D.J. Lipman, J. Ostell, B.F. Ouellette et al., 1999. GenBank. Nucl. Acids Res. 27: 12–17.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S.E., C. Chothia & T.J. Hubbard, 1998. Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. USA 95: 6073–6078.

    Article  PubMed  CAS  Google Scholar 

  • Cho, G. & R.F. Doolittle, 1997. Intron distribution in ancient paralogs supports random insertion and not random loss. J. Mol. Evol. 44: 573–584.

    Article  PubMed  CAS  Google Scholar 

  • de Souza, S.J., M. Long, R.J. Klein, S. Roy, S. Lin et al., 1998. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA 95: 5094–5099.

    Article  PubMed  Google Scholar 

  • Doolittle, W.F., 1978. Genes in pieces: were they ever together? Nature 272: 581–582.

    Article  Google Scholar 

  • Dorit, R.L., L. Schoenbach & W. Gilbert, 1990. How big is the universe of exons? Science 250: 1377–1382.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1987. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52: 901–905.

    Article  CAS  Google Scholar 

  • Logsdon Jr., J.M., A. Stoltzfus & W.F. Doolittle, 1998. Molecular evolution: recent cases of spliceosomal intron gain? Curr. Biol. 8: R560–563.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S.W., M. Nosaka, S.J. de Souza & W. Gilbert, 1999. Centripetal modules and ancient introns. Gene 238: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Saxonov, S., I. Daizadeh, A. Fedorov & W. Gilbert, 2000. EID: the exon-intron database — an exhaustive database of protein-coding intron-containing genes. Nucl. Acids Res. 28: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Zipf, G.K., 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley, Redwood City, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saxonov, S., Gilbert, W. (2003). The universe of exons revisited. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics