Light Propagation in Chiral and Magnetochiral Random Media

The Impact of Broken Symmetries
  • F.A. Pinheiro
  • B.A. Van Tiggelen
Conference paper
Part of the NATO Science Series book series (NAII, volume 107)

Abstract

The complex nature of wave transport, which constituted the central theme of the Cargèse meeting, can arise from several distinct sources. These sources can be generally identified as a complex media that support wave propagation and/or some complex constraint to wave transport. As examples of complex media that have recently attracted a lot of attention, one can mention cold atomic gases [1], strongly disordered media [2], photonic band gap materials [3] and natural environments, such as the Earth’s crust [4] and biological tissues [5], intrinsically complex media that are now being studied using multiple scattering techniques. Much of this progress is supported by several interdisciplinary collaborations, motivated mainly by the numerous and potential applications [6].

Keywords

Clay Vortex Microwave Propa Resid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kaiser, in Diffuse Waves in Complex Media, edited by J.-P. Fouque, NATO Science Series (Kluwer, Dordrecht, 1999); G. Labeyrie et al., Phys. Rev. Lett. 83, 5266 (1999); Y. Bidel et al., Phys. Rev. Lett. 88, 203902 (2002).Google Scholar
  2. 2.
    A. Lagendijk et al., in Photonic Crystals and Light Localization in the 21st Century, edited by C. M. Soukoulis, NATO Science Series (Kluwer, Dordrecht, 2001).Google Scholar
  3. 3.
    Photonic Crystals and Light Localization in the 21st Century, edited by C. M. Soukoulis, NATO Science Series (Kluwer, Dordrecht, 2001).Google Scholar
  4. 4.
    R. Hennino et al., Phys. Rev. Lett. 86, 3447 (2001).CrossRefGoogle Scholar
  5. 5.
    J. Virmont and G. Ledanois, in New Aspects of Electromagnetic and Acoustic Wave Diffusion, edited by POAN Research Group (Springer, Heidelberg, 1998).Google Scholar
  6. 6.
    Diffuse Waves in Complex Media, edited by J.-P. Fouque, NATO Science Series (Kluwer, Dordrecht, 1999); New Aspects of Electromagnetic and Acoustic Wave Diffusion, edited by POAN Research Group (Springer, Heidelberg, 1998); Waves and Imaging Through Complex Media, edited by P. Sebbah (Kluwer, Dordrecht, 2001).MATHGoogle Scholar
  7. 7.
    R. Lenke and G. Maret, Eur. Phys. J. B 17, 171 (2000).CrossRefGoogle Scholar
  8. 8.
    B. A. van Tiggelen, Phys. Rev. Lett. 75, 422 (1995).CrossRefGoogle Scholar
  9. 9.
    G. L. J. A. Rikken and B. A. van Tiggelen, Nature 381, 54 (1996).CrossRefGoogle Scholar
  10. 10.
    P. Roux and M. Fink, Europhys. Lett. 32, 25 (1995).CrossRefGoogle Scholar
  11. 11.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).CrossRefGoogle Scholar
  12. 12.
    W. Thomson, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, (C. J. Clay, London, 1904), p. 619.Google Scholar
  13. 13.
    L. D. Barron, Molecular Light Scattering and Optical Activity, (Cambridge University Press, Cambridge, 1982).Google Scholar
  14. 14.
    M. P. Silverman, W. Strange, J. Badoz and I. A. Vitkin, Opt. Commun. 132, 410 (1996).CrossRefGoogle Scholar
  15. 15.
    B. P. Ablitt et al., Waves in Random Media 9, 561 (1999).MATHCrossRefGoogle Scholar
  16. 16.
    M. P. Groenewege, Mol. Phys. 5, 541 (1962).CrossRefGoogle Scholar
  17. 17.
    G. Wagnière, Chem. Phys. 245, 165 (1999).CrossRefGoogle Scholar
  18. 18.
    G. L. J. A. Rikken and E. Raupach, Nature (London) 390, 493 (1997).CrossRefGoogle Scholar
  19. 19.
    P. Kleindienst and G. H. Wagnière, Chem. Phys. Lett. 288, 89 (1998).CrossRefGoogle Scholar
  20. 20.
    M. Vallet et al., Phys. Rev. Lett. 87, 183003 (2001).CrossRefGoogle Scholar
  21. 21.
    G. Gilat, J. Phys. A: Math. Gen. 22, L545 (1989).CrossRefGoogle Scholar
  22. 22.
    M. A. Osipov, B. T. Pickup and D. A. Dunmur, Mol. Phys. 84, 1193 (1995).CrossRefGoogle Scholar
  23. 23.
    A. B. Harris, R. D. Kamien and T. C. Lubensky, Phys. Rev. Lett. 78, 1476 (1997); 2867(E).CrossRefGoogle Scholar
  24. 24.
    A. B. Harris, R. D. Kamien and T. C. Lubensky, Rev. Mod. Phys. 71, 1745 (1999).CrossRefGoogle Scholar
  25. 25.
    M. S. Spector et al., Phys. Rev. E 61, 3977 (2000).CrossRefGoogle Scholar
  26. 26.
    P. Sheng, Wave Scattering, Localization and Mesoscopic Phenomena (Academic, San Diego, 1995).Google Scholar
  27. 27.
    G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).Google Scholar
  28. 28.
    R. G. Newton, Scattering Theory of Waves and Particles (Springer Verlag, New York, 1982).MATHGoogle Scholar
  29. 29.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic Press, San Diego, 1978).Google Scholar
  30. 30.
    G. Labeyrie, C. Miniatura and R. Kaiser, Phys. Rev. A 64, 033402 (2001).CrossRefGoogle Scholar
  31. 31.
    B. A. van Tiggelen, R. Maynard and T. M. Nieuwenhuizen, Phys. Rev. E 53, 2881 (1996).CrossRefGoogle Scholar
  32. 32.
    M. Rusek and A. Orlowski, Phys. Rev. E 51, R2763 (1995); M. Rusek and A. Or-lowski, Phys. Rev. E 56, 6090 (1997).CrossRefGoogle Scholar
  33. 33.
    F. A. Pinheiro and B. A. van Tiggelen, Phys. Rev. E 66, 016607 (2002).CrossRefGoogle Scholar
  34. 34.
    F. A. Pinheiro and B. A. van Tiggelen, J. Opt. Soc. Am. A 20, 99 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • F.A. Pinheiro
    • 1
  • B.A. Van Tiggelen
    • 1
  1. 1.CNRS/Laboratoire de Physique et Modélisation des Milieux CondensésUniversité Joseph Fourier Maison des MagistèresGrenoble, Cedex 9France

Personalised recommendations