Skip to main content

Optical Microrheology of Soft Complex Materials

  • Conference paper
  • 537 Accesses

Part of the book series: NATO Science Series ((NAII,volume 107))

Abstract

Dynamic multiple light scattering (diffusing wave spectroscopy, DWS) has been used to study the viscoelastic properties of soft materials. Several new multiple scattering approaches were implemented to extend the range of application of this optical microrheology technique. Taking advantage of the recently developed “two-cell technique” we show how DWS can be used to investigate the properties of fluid and solid-like complex media. Furthermore, we have significantly extended the range of accessible correlation times to at least 10-8–104 sec using a CCD-based multi-speckle analysis scheme. Excellent agreement is found when comparing the results obtained from DWS to classical oscillatory shear measurements. However, compared to classical rheology, we were able to significantly increase the range of accessible frequencies, thereby opening up a wealth of new possibilities for the study of these fascinating materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Gisler and D.A. Weitz, Curr. Opin. Coll. Int. Sci. 3, 586 (1998); M.L. Gardel, M.T. Valentine, and D.A. Weitz, in: Microscale Diagnostic Techniques, K. Breuer (Ed.) (Springer Verlag, Berlin, 2002), in press.

    Article  Google Scholar 

  2. N.J. Wagner and R.K. Prud’homme (Eds.), Curr. Opin. Coll. Int. Sci. 6 (2001).

    Google Scholar 

  3. T.G. Mason and D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995); T.G. Mason et al., J. Opt. Soc. Am. A 14, 139 (1997); T.G. Mason et al., Phys. Rev. Lett. 79, 3282 (1997).

    Article  Google Scholar 

  4. F. Gittes, B. Schnurr, P.D. Olmsted, F.C. MacKintosh, and C.F. Schmidt, Phys. Rev. Lett. 79, 3286 (1997).

    Article  Google Scholar 

  5. J.C. Crocker et al., Phys. Rev. Lett. 85, 888 (2000).

    Article  Google Scholar 

  6. A. Knaebel, M. Bellour, J.-P. Munch, V. Viasnoff, F. Lequeux, and J.L. Harden, Europhys. Lett. 52, 73 (2000).

    Article  Google Scholar 

  7. S. Romer, F. Scheffold and P. Schurtenberger, Phys. Rev. Lett. 85, 4980 (2000).

    Article  Google Scholar 

  8. B.R. Dasgupta, S.-Y. Tee, J.C. Crocker, B.J. Frisken, and D.A. Weitz, Phys. Rev. E 65, 051505 (2002).

    Article  Google Scholar 

  9. L.F. Rojas, R. Vavrin, C. Urban, J. Kohlbrecher, A. Stradner, F. Scheffold, and P. Schurtenberger, Faraday Discussions 123, to appear (2002).

    Google Scholar 

  10. K.M. Addas, J.X. Tang, A.J. Levine, C.F. Schmidt, Biophys. J. 82, 2432 (2002).

    Google Scholar 

  11. A.J. Levine and T.C. Lubensky, Phys. Rev. Lett. 85, 1774 (2000); A.J. Levine and T.C. Lubensky, Phys. Rev. E 63, 041510 (2000).

    Article  Google Scholar 

  12. F. Cardinaux, L. Cipelletti, F. Scheffold, and P. Schurtenberger, Europhys. Lett. 57, 738 (2002).

    Article  Google Scholar 

  13. F.A. Erbacher, R. Lenke, and G. Maret, Europhys. Lett. 21, 551 (1993).

    Article  Google Scholar 

  14. S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, J. Chem. Phys. 104, 1758 (1996).

    Article  Google Scholar 

  15. L. Cipelletti, S. Manley, R.C. Ball, and D.A. Weitz, Phys. Rev. Lett. 84, 2275 (2000).

    Article  Google Scholar 

  16. M. Bellour, M. Skouri, J.P. Munch, and P Hebraud, Eur. J. Phys. 8, 431 (2002).

    Google Scholar 

  17. P. Schurtenberger, A. Stradner, S. Romer, C. Urban, and F. Scheffold, CHIMIA 55, 155 (2001).

    Google Scholar 

  18. H. Wyss, S. Romer, F. SchefTold, P. Schurtenberger, and L.J. Gauckler, J. Coll. Int. Sci. 241, 89 (2001).

    Article  Google Scholar 

  19. A.J. Vasbinder, P.J.J.M. van Mil, A. Bot, and K.G. de Kruif, Coll. and Surfaces B — Biointerfaces 21, 245 (2001).

    Article  Google Scholar 

  20. C. Heinemann, F. Cardinaux, F. Scheffold, P. Schurtenberger, F. Escher, and B. Conde-Petit, Tracer microrheology of γ-dodecalactone induced gelation of aqueous starch systems, in preparation.

    Google Scholar 

  21. G. Maret and P.E. Wolf, Z. Phys. B 65, 409 (1987).

    Article  Google Scholar 

  22. D.A. Weitz and D.J. Pine, in: Dynamic Light Scattering, W. Brown (Ed.) (Oxford Univ. Press, New York, 1993), Chap. 16.

    Google Scholar 

  23. F. SchefTold, J. of Disp. Sci. and Tech. 23, 591 (2002).

    Article  Google Scholar 

  24. H. Bissig, S. Romer, L. Cipelleti, V. Trappe, and P. Schurtenberger, Intermittent dynamics and hyper-aging in dense colloidal gels, submitted to PhysChemComm (e-journal).

    Google Scholar 

  25. J.Z. Xue, D.J. Pine, S.T. Milner, X.L. Wu, and P.M. Chaikin, Phys. Rev. A 46, 6550 (1992); P.N. Pusey and W. van Megen, Physica A 157, 705 (1989).

    Article  Google Scholar 

  26. G. Nisato, P. Hébraud, J-P. Munch, and S.J. Candau, Phys. Rev. E 61, 2879 (2000).

    Article  Google Scholar 

  27. M. Heckmeier and G. Maret, Progr. Colloid Polym. Sci. 104, 12 (1997); Opt. Commun. 148, 1 (1998).

    Article  Google Scholar 

  28. F. Scheffold, S.E. Skipetrov, S. Romer, and P. Schurtenberger, Phys. Rev. E 63, 061404 (2001).

    Article  Google Scholar 

  29. V. Viasnoff, F. Lequeux, and D.J. Pine, Rev. Sci. Instrum. 73, 2336 (2002).

    Article  Google Scholar 

  30. S.E. Skipetrov and R. Maynard, Phys. Lett. A 217, 181 (1996).

    Article  Google Scholar 

  31. D.A. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984); D.A. Weitz, J.S. Huang, M.Y. Lin, and J. Sung, Phys. Rev. Lett. 53, 1657 (1984); P. Dimon, S.K. Sinha, D.A. Weitz, C.R. Safinya, G.S. Smith, W.A. Varady, and H.M. Lindsay, Phys. Rev. Lett. 57, 595 (1986); R. Klein, D.A. Weitz, M.Y. Lin, H.M. Lindsay, R.C. Ball, and P. Meakin, Prog. Coll. Int. Sci. 81, 161 (1990).

    Article  Google Scholar 

  32. E. Dickinson, J. Coll. Int. Sci. 225, 2 (2000) and references therein.

    Article  Google Scholar 

  33. C.M. Sorensen, Aerosol Sci. Tech. 35, 648 (2001).

    Google Scholar 

  34. A.H. Krall and D.A. Weitz, Phys. Rev. Lett. 80, 778 (1998).

    Article  Google Scholar 

  35. D.W. Schaefer, J.E. Martin, P. Wiltzius, and D.S. Cannell, Phys. Rev. Lett. 52, 2371 (1984); Dietler and D.S. Cannell, Phys. Rev. Lett. 60, 1852 (1988).

    Article  Google Scholar 

  36. M. Carpineti and M. Giglio, Phys. Rev. Lett. 68, 3327 (1992).

    Article  Google Scholar 

  37. T. Nicolai, D. Durand, and J. Gimel, Phys. Rev. B 50, 16357 (1994).

    Article  Google Scholar 

  38. H. Bissig, S. Romer, V. Trappe, F. Scheffold, and P. Schurtenberger, unpublished.

    Google Scholar 

  39. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (John Wiley and Sons, New York, 1980).

    Google Scholar 

  40. J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1996).

    Google Scholar 

  41. L. Starrs and P. Bartlett, Faraday Discussions 123, to appear (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Scheffold, F., Cardinaux, F., Romer, S., Schurtenberger, P., Skipetrov, S.E., Cipelletti, L. (2003). Optical Microrheology of Soft Complex Materials. In: van Tiggelen, B.A., Skipetrov, S.E. (eds) Wave Scattering in Complex Media: From Theory to Applications. NATO Science Series, vol 107. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0227-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0227-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1394-2

  • Online ISBN: 978-94-010-0227-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics