Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 107))

  • 555 Accesses

Abstract

Rapidly increasing interest in the left-handed materials (LHM) started after Pendry et al. predicted that certain man-made composite structure could possess, in a given frequency interval, a negative effective magnetic permeability µ eff [1]. Combination of such a structure with negative effective permittivity medium — for instance the regular array of thin metallic wires [27] — enabled the construction of meta-materials with both effective permittivity and permittivity negative. This was confirmed by experiments [8, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pendry J.B., Holden A.J., Robbins D.J. and Stewart W.J. (1999) Magnetism from conductors and enhanced nonlinear phenomena IEEE Trans. on Microwave Theory and Techn. 47 2075

    Article  Google Scholar 

  2. Pendry J.B., Holden A.J., Stewart W.J. and Youngs I. (1996) Extremely Low Frequency Plasmons in Metallic Mesostructures Phys. Rev. Lett. 76, 4773

    Article  Google Scholar 

  3. Pendry J.B., Holden A.J., Stewart W.J. and Youngs I. (1998) J. Phys.: Condens. Matt. 10, 4785

    Article  Google Scholar 

  4. Sigalas M., Chan C.T., Ho K.M., and Soukoulis C.M. (1995) Phys. Rev. B 52, 11 744

    Article  Google Scholar 

  5. Smith D.R., Schultz S., Kroll N., Sigalas M., Ho K. M. and Soukoulis C.M. (1994) Defect studies in a two-dimensional periodic photonic lattice Appl. Phys. Lett. 65, 645

    Article  Google Scholar 

  6. Sarychev A.K. and Shalaev V.M. (2001) Comment on [2], e-print cond-mat/0103145

    Google Scholar 

  7. Pokrovsky A.L., and Efros A.L. (2002) Electrodynamic of metallic photonic crystals and the problem of left-handed materials Phys. Rev. Lett. 89, 093901

    Article  Google Scholar 

  8. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C. and Schultz S. (2000) A Composite medium with simultaneously negative permeability and permittivity Phys. Rev. Lett. 84, 4184

    Article  Google Scholar 

  9. Shelby R.A., Smith D.R., Nemat-Nasser S.C. and Schultz S. (2001) Microwave transmission through a two-dimensional, isotropic, left-handed meta material Appl. Phys. Lett. 78, 489

    Article  Google Scholar 

  10. Veselago V.G. (1968) The electrodynamics of substances with simultaneously negative values of permittivity and permeability Sov. Phys. Usp. 10, 509

    Article  Google Scholar 

  11. Smith D.R. and Kroll N. (2000) Negative Refractive Index in Left-Handed Materials Phys. Rev. Lett. 85 2933

    Article  Google Scholar 

  12. Shelby R.A., Smith D.R. and Schultz S. (2001) Experimental verification of a negative index of refraction Science 292, 77

    Article  Google Scholar 

  13. Parazzoli C.G., Gregor R.B., Li K., Koltenbah B.E.C., Tanielian M. (2002) Experimental verification and simulation of negative index of refraction using Snell’s law, preprint

    Google Scholar 

  14. Valanju P.M., Walser R.M., and Valanju A.O., Wave refraction in negative-index materials: Always positive and very inhomogeneous Phys. Rev. Lett. 88, 187401 (2002)

    Article  Google Scholar 

  15. Pendry J.B. and Smith. D.R. (2002) reply to [14] e-print cond-mat/0206563

    Google Scholar 

  16. Garcia N. and Nieto-Vesperinas M. (2002) Is there an Experimental Verification of a Negative Index of Refraction yet? Optics Lett. 27, 885

    Article  Google Scholar 

  17. Sanz V., Papageorgopoulos A.C., Egelhoff Jr. W.F., Nieto-Vesperinas M., and Garcia N. (2002) Wedge-shaped absorbing samples look left handed: The problem of interpreting negative refraction, and its solution e-print cond-mat/0206464

    Google Scholar 

  18. Ziolkowski R.W. and Heyman E. (2001) Wave propagation in media having negative permittivity and permeability Phys. Rev. E 64 056625

    Article  Google Scholar 

  19. Smith D. R., Shultz S., Markoš P. and Soukoulis C.M. (2002) Determination of Effective Permittivity and Permeability of Metamaterials from reflection and Transmission Coefficient Phys. Rev. B 65 195104

    Article  Google Scholar 

  20. Parazzoli C.G. (2002) private communication

    Google Scholar 

  21. Pendry J.B. (2000) Negative refraction makes a perfect lens Phys. Rev. Lett. 85, 3966

    Article  Google Scholar 

  22. t’Hooft G. W. (2001) Comment on [21] Phys. Rev. Lett. 87 249701; Williams J. M. (2001) Comment on [21] Phys. Rev. Lett. 87 249703

    Article  Google Scholar 

  23. Garcia N. and Nieto-Vesperinas M. (2002) Negative refraction does not makes perfect lens Phys. Rev. Lett. 88, 122501 (2002); Garcia N. and Nieto-Vesperinas M. (2002) Answer to [25], e-print cond-mat/0207413; Garcia N. and Nieto-Vesperinas M. (2002) Answer to [30], e-print cond-mat/0207489

    Article  Google Scholar 

  24. Pendry J. B. (2001) Replies to [22] Phys. Rev. Lett 87 249702; ibid 249704

    Article  Google Scholar 

  25. Pendry J. B. (2002) Comment on [23] e-print cond-mat/020561

    Google Scholar 

  26. Pendry J.B. and Smith D.R. (2002) Comment on [14] e-print cond-mat/0206563

    Google Scholar 

  27. Lu W.T., Sokoloff J.B. and Sridhar S (2002) Comment on [14] e-print cond-mat/0207689

    Google Scholar 

  28. Gómez-Santos G. (2002) Universal features of time dynamics in a left-handed perfect lens e-print cond-mat/0210283

    Google Scholar 

  29. Ruppin R. (2000) Surface polaritons of a left-handed medium Phys. Lett. A 277 61; Ruppin R. (2001) Surface polaritons of a left-handed material slab J. Phys.: Condens. Matt. 13 1811

    Article  Google Scholar 

  30. Haidane F. D. M. (2002) Electromagnetic surface modes at interfaces with negative refractive index make a “Not-quite-perfect” lens e-print cond-mat/0206420

    Google Scholar 

  31. Smith D.R. and Schurig D. (2002) Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors e-print cond-mat/0210625

    Google Scholar 

  32. Feise M. W., Bevelacqua P. J., Schneider J. B. (2002) Effects of surface waves on the behavior of perfect lenses Phys. Rev. B 66 035113

    Article  Google Scholar 

  33. Ramakrishna S. A. Pendry J. B., Schurig D., Smith D.R., and Shultz S. (2002) The asymmetry lossy near-perfect lens e-print cond-mat/0206564; Pendry J. B. and Ramakrishna S. A. (2002) Near-field lenses in two dimensions J. Phys.: Condens. matt. 14 8463

    Google Scholar 

  34. Nefedov I. S. and Tretyakov S. A. (2002) Photonic band gap structure containing meta material with negative permittivity and permeability Phys. Rev. B 66 036611

    Article  Google Scholar 

  35. Zhang Z.M., Fu C.J. (2002) Unusual photon tunneling in the presence of a layer with negative refractive index Appl. Phys. Lett. 80 1097

    Article  Google Scholar 

  36. Landau L.D., Lifshitz E.M. and Pitaevskiĭ L.P. Electrodynamics of Continuous Media, Pergamon Press 1984

    Google Scholar 

  37. Li K., McLean S.J., Gregor R.B., Parazzoli, C.G., Tanielian M.H. (2002) Free-space focused-beam characterization of left handed materials, preprint

    Google Scholar 

  38. Markoš P., Rousohatzakis I. and Soukoulis C.M. (2002) Transmission Losses in Left-handed materials Phys. Rev. E 66 045601

    Article  Google Scholar 

  39. Smith D.R., Padilla W.J., Vier D.C., Shelby R., Nemat-Nasser S.C., Kroll N. and Shultz S. (2000) Left-handed metamaterials, in Photonic Crystals and Light Localization, ed. Soukoulis C.M. (Kluwer, Netherlands)

    Google Scholar 

  40. Pendry J.B. (2001) Electromagnetic materials enter the negative age Phys. World 14 47; Pendry J.B. (2000) Light runs backward in time Phys. Word 13 27; Pendry J.B. (2000) Physics Today 53(5) 17

    Google Scholar 

  41. Bayindir M., Aydin K., Ozbay E., Markoš P. and Soukoulis C.M. (2002) Transmission Properties of Composite Metamaterials in Free Space Appl. Phys. Lett. 81 120

    Article  Google Scholar 

  42. Ziolkowski R.W. (2002) Design, fabrication and testing of double negative metamaterials preprint

    Google Scholar 

  43. Marqués R., Martel J., Mesa F. and Medina F. (2002) Left-handed simulation and transmission of EM waves in sub-wavelength split-ring-resonator-loaded metallic waveguides Phys. Rev. Lett. 89 183901

    Article  Google Scholar 

  44. Pendry J.B., and MacKinnon A. (1992) Phys. Rev. Lett. 69 2772; Pendry J.B., MacKinnon A., and Roberts P.J., (1992) Proc. Roy. Soc. London Ser. A 437, 67; Pendry J.B. (1994) Photonic band gap structures J. Modern Optics 41 209; Ward A.J. and Pendry J.B. (1996) Refraction and geometry in Maxwell’s equations J. Modern Optics 43 773; Pendry J.B. and Bell P.M. 1996 in Photonic Band Gap Materials vol. 315 of NATO ASI Ser. E: Applied Sciences, ed. by C.M. Soukoulis (plenum, NY) p. 203

    Article  Google Scholar 

  45. Markos P. and Soukoulis C.M. (2002) Transmission Studies of the Left-handed materials Phys. Rev. B 65 033401

    Article  Google Scholar 

  46. Markos P. and Soukoulis C.M. (2002) Numerical Studies of Left-handed materials and Arrays of Split Ring Resonators Phys. Rev. E 65 036622

    Article  Google Scholar 

  47. Weiland T. et al. (2001) J. Appl. Phys 90 5419

    Article  Google Scholar 

  48. Garcia N., and Ponizovskaya E.V. (2002) Calculation of the effective permittivity of a array of wires and the left-handed materials e-print cond-mat/02064-60 Ponizovskaya E.V., Nieto-Vesperinas M., and Garcia N. (2002) Losses for microwave transmission metamaterials for producing left-handed materials: The strip wires e-print cond-mat/0206429

    Google Scholar 

  49. Contributions to PIERS’ 2002 Conference, Boston, July 1.-5.: Zhang Y., Grzegorz-cyk T.M., and Kong J.A. Propagation of electromagnetic waves in a left-handed medium; Kik P.G., Maier S.A., and Atwater H.A. (2002) The perfect Lens in a non-perfect world; Moss C.D., Zhang Y., Grzegorczyk T.M., and Kong J.A. FTDT simulation of propagation through LHM

    Google Scholar 

  50. Jackson J.D. Classical Electrodynamic (3rd edition), J. Willey and Sons, 1999, p. 312

    Google Scholar 

  51. Markoš P. and Soukoulis C.M. (2002) unpublished

    Google Scholar 

  52. O’Brien S. and Pendry J.B. (2002) Photonic band gap effects and magnetic activity of dielectric composites J. Phys.: Condens. Matter 14 4035; O’Brien S. and Pendry J.B. (2002) Magnetic activity at infrared frequencies in structured metallic photonic crystals J. Phys.: Condens. Matter 14 6389

    Article  Google Scholar 

  53. Ruppin R. (2002) Electromagnetic energy density in a dispersive and absorptive material Phys. Lett. A 299 309

    Article  Google Scholar 

  54. Notomi M. (2000) Theory of light propagation in strongly modulated photonic crystals: Refraction behavior in the vicinity of the photonic band gap Phys. Rev. B 62 10696

    Article  Google Scholar 

  55. Foteinopoulou S., and Soukoulis C.M. (2002) Negative refraction and left-handed behavior in two-dimensional photonic crystals Phys. Rev. Lett. (submitted)

    Google Scholar 

  56. Foteinopoulou S., Economou E.N., and Soukoulis C.M. (2002) Refraction at media with negative refractive index Phys. Rev. Lett. (submitted)

    Google Scholar 

  57. Cubukcu E., Aydin K., Ozbay E., Foteinopoulou S., and Soukoulis C.M. (2002) Experimental demonstration of superlensing in two dimensional photonic crystals Nature submitted

    Google Scholar 

  58. Kosaka H., Kanashima T., Tomita A., Notomi, M., Tamamura T., Sato T., and Kawakami S. (1998) Superprism phenomena in photonic crystals Phys. Rev. B 58 10096

    Article  Google Scholar 

  59. Gralak B., Enoch S. and Tayeb G. (2000) Anomalous refractive properties of photonic crystals J. Opt. Soc. Am. A 17 1012

    Article  Google Scholar 

  60. Hu L., and Chui S.T. (2002) Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials Phys. Rev. B 66 085108

    Article  Google Scholar 

  61. Marqués R., Medina F., and Rafii-Idrissi R. (2002) Role of bi-anisotropy in negative permeability and left-handed metamaterials Phys. Rev. B 65 144440

    Article  Google Scholar 

  62. Gorkunov M., Lapine M., Shamonina E. and Ringhofer K. H. (2002) Effective magnetic properties of a composite material with circular conductive elements Eur. Phys. J. B 28 263

    Article  Google Scholar 

  63. Pendry J.B. and O’Brien S (2002) Very low frequency magnetic plasma J. Phys.: Condens. Matter 14 7404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Markoš, P., Soukoulis, C. (2003). Left-Handed Materials. In: van Tiggelen, B.A., Skipetrov, S.E. (eds) Wave Scattering in Complex Media: From Theory to Applications. NATO Science Series, vol 107. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0227-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0227-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1394-2

  • Online ISBN: 978-94-010-0227-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics