Dimensional Crossover in 2D Crossbars

  • K. Kikoin
  • I. Kuzmenko
  • S. Gredeskul
  • Y. Avishai
Part of the NATO Science Series book series (NAII, volume 106)

Abstract

Spectrum of boson fields and two-point correlation functions are analyzed in quantum crossbars (QCB, a superlattice formed by two crossed interacting arrays of quantum wires), with short range inter-wire interaction. It is shown that the standard bosonization procedure is valid, and the system behaves as a sliding Luttinger liquid in the infrared limit, but the high frequency spectral and correlation characteristics have either 1D or 2D nature depending on the direction of the wave vector in the 2D Brillouin zone. As a result, the crossover from 1D to 2D regime may be experimentally observed. Plasmon propagation in arbitrary direction is possible. Periodic energy transfer between arrays (“Rabi oscillations”) is predicted.

Keywords

Anisotropy Cond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Voit, Rep. Prog. Phys., 58, 977 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Anderson, Science, 235, 1196 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Science 289, 94 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    J. von Delft, and H. Schoeller, Ann. der Physik 7, 225 (1998).ADSMATHCrossRefGoogle Scholar
  5. 5.
    X.G. Wen, Phys. Rev. B42, 6623 (1990); H.J. Schultz, Int. J. Mod. Phys. 1-2. 57 (1991).ADSGoogle Scholar
  6. 6.
    V. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, Phys. Rev. Lett. 85, 2160 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    A. Vishwanath and D. Carpentier, Phys. Rev. Lett. 86, 676 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    R. Mukhopadhyay, C.L. Kane, and T.C. Lubensky, Phys. Rev. B 63, 081103(R) (2001); Phys. Rev. B 64, 045120 (2001); cond-mat/0102163.Google Scholar
  9. 9.
    C.S. Hern, T.C. Lubensky, and J. Toner, Phys. Rev. Lett. 83, 2745 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    S.L. Sondhi and K. Yang, Phys. Rev. B 63 054430 (2001)ADSCrossRefGoogle Scholar
  11. 10a.
    C.L. Kane, R. Mukhopadhyay, and T.C. Lubensky, Phys. Rev. Lett. 88, 036401 (2002).ADSCrossRefGoogle Scholar
  12. 11.
    J.E. Avron, A. Raveh, and B. Zur, Rev. Mod.Phys. 60, 873 (1988).MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    Y. Avishai, and J.M. Luck, Phys. Rev. B 45, 1074 (1992).ADSCrossRefGoogle Scholar
  14. 13.
    F. Guinea, and G. Zimanyi, Phys. Rev. B 47, 501 (1993).ADSCrossRefGoogle Scholar
  15. 14.
    A.H. Castro Neto, and F. Guinea, Phys. Rev. Lett. 80, 4040 (1998).ADSCrossRefGoogle Scholar
  16. 15.
    I. Kuzmenko, S. Gredeskul, K. Kikoin and Y. Avishai, Low Temp. Phys. 28, 752 (2002).CrossRefGoogle Scholar
  17. 16.
    K. Sasaki, cond-mat/0112178.Google Scholar
  18. 17.
    S.G. Louie in Carbon Nanotubes, M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.), Topics Appl. Phys. 80, 113 (2001), Springer, Berlin 2001.Google Scholar
  19. 18.
    R. Egger, A. Bachtold, M.S. Fuhrer, M. Bockrath, D.H. Cobden, and P.L. McEuen, condmat/0008008.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • K. Kikoin
    • 1
  • I. Kuzmenko
    • 1
  • S. Gredeskul
    • 1
  • Y. Avishai
    • 1
  1. 1.Department of PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations