Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 106))

Abstract

Spectrum of boson fields and two-point correlation functions are analyzed in quantum crossbars (QCB, a superlattice formed by two crossed interacting arrays of quantum wires), with short range inter-wire interaction. It is shown that the standard bosonization procedure is valid, and the system behaves as a sliding Luttinger liquid in the infrared limit, but the high frequency spectral and correlation characteristics have either 1D or 2D nature depending on the direction of the wave vector in the 2D Brillouin zone. As a result, the crossover from 1D to 2D regime may be experimentally observed. Plasmon propagation in arbitrary direction is possible. Periodic energy transfer between arrays (“Rabi oscillations”) is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Voit, Rep. Prog. Phys., 58, 977 (1994).

    Article  ADS  Google Scholar 

  2. P.W. Anderson, Science, 235, 1196 (1987).

    Article  ADS  Google Scholar 

  3. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Science 289, 94 (2000).

    Article  ADS  Google Scholar 

  4. J. von Delft, and H. Schoeller, Ann. der Physik 7, 225 (1998).

    Article  ADS  MATH  Google Scholar 

  5. X.G. Wen, Phys. Rev. B42, 6623 (1990); H.J. Schultz, Int. J. Mod. Phys. 1-2. 57 (1991).

    ADS  Google Scholar 

  6. V. Emery, E. Fradkin, S.A. Kivelson, and T.C. Lubensky, Phys. Rev. Lett. 85, 2160 (2000).

    Article  ADS  Google Scholar 

  7. A. Vishwanath and D. Carpentier, Phys. Rev. Lett. 86, 676 (2001).

    Article  ADS  Google Scholar 

  8. R. Mukhopadhyay, C.L. Kane, and T.C. Lubensky, Phys. Rev. B 63, 081103(R) (2001); Phys. Rev. B 64, 045120 (2001); cond-mat/0102163.

    Google Scholar 

  9. C.S. Hern, T.C. Lubensky, and J. Toner, Phys. Rev. Lett. 83, 2745 (1999).

    Article  ADS  Google Scholar 

  10. S.L. Sondhi and K. Yang, Phys. Rev. B 63 054430 (2001)

    Article  ADS  Google Scholar 

  11. C.L. Kane, R. Mukhopadhyay, and T.C. Lubensky, Phys. Rev. Lett. 88, 036401 (2002).

    Article  ADS  Google Scholar 

  12. J.E. Avron, A. Raveh, and B. Zur, Rev. Mod.Phys. 60, 873 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  13. Y. Avishai, and J.M. Luck, Phys. Rev. B 45, 1074 (1992).

    Article  ADS  Google Scholar 

  14. F. Guinea, and G. Zimanyi, Phys. Rev. B 47, 501 (1993).

    Article  ADS  Google Scholar 

  15. A.H. Castro Neto, and F. Guinea, Phys. Rev. Lett. 80, 4040 (1998).

    Article  ADS  Google Scholar 

  16. I. Kuzmenko, S. Gredeskul, K. Kikoin and Y. Avishai, Low Temp. Phys. 28, 752 (2002).

    Article  Google Scholar 

  17. K. Sasaki, cond-mat/0112178.

    Google Scholar 

  18. S.G. Louie in Carbon Nanotubes, M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds.), Topics Appl. Phys. 80, 113 (2001), Springer, Berlin 2001.

    Google Scholar 

  19. R. Egger, A. Bachtold, M.S. Fuhrer, M. Bockrath, D.H. Cobden, and P.L. McEuen, condmat/0008008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kikoin, K., Kuzmenko, I., Gredeskul, S., Avishai, Y. (2003). Dimensional Crossover in 2D Crossbars. In: Vagner, I.D., Wyder, P., Maniv, T. (eds) Recent Trends in Theory of Physical Phenomena in High Magnetic Fields. NATO Science Series, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0221-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0221-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1373-7

  • Online ISBN: 978-94-010-0221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics