Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 106))

Abstract

Back in 1982, when condensed matter physicists were slowly recovering from the shock produced by the discovery of the (integer) Quantum Hall Effect (IQHE) two years earlier [1], a new surprise came in a paper by Tsui, Stornier, and Gossard [2], who reported quantized Hall plateaus at filling factors v = 1/3 and v = 2/3 (see Fig. 1). This finding opened the vast field of exciting studies of the Fractional Quantum Hall Effect (FQHE), in which many new surprises were to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Klitzing, K., Dorda, and Pepper, M. (1980) Phys. Rev. Lett. 45, 494.

    Article  ADS  Google Scholar 

  2. Tsui, D.C., Stornier, H.L. and Gossard, A.C. (1982) Phys. Rev. Lett. 48, 1559.

    Article  ADS  Google Scholar 

  3. Yoshioka, D. and Lee, P.A. (1983) Phys. Rev. B 27, 4986

    Article  ADS  Google Scholar 

  4. Laughlin, R. (1983) Phys. Rev. Lett. 50, 1395.

    Article  ADS  Google Scholar 

  5. Su W.P. and Schrieffer, J.R. (1981) Phys. Rev. Lett. 46, 738.

    Article  ADS  Google Scholar 

  6. Stornier, H.L.(1992) Physica B 177, 401.

    Google Scholar 

  7. Du, R.R., Stornier, H.L., Tsui, D.C., Pfeiffer, L.N., and West, K.W. (1993) 2944.

    Google Scholar 

  8. Haidane, F.D.M. (1983) Phys. Rev. Lett. 51, 605.

    Article  MathSciNet  ADS  Google Scholar 

  9. Jain, J.K. (1989) Phys. Rev. Lett. 63, 199, (1989) Phys. Rev. B 40, 8079, (1990) Phys. Rev. B 41, 7653.

    Article  ADS  Google Scholar 

  10. Lopez, A. and Fradkin, E. (1991) Phys. Rev. B 44, 5246 ibid 47, 7080.

    Article  ADS  Google Scholar 

  11. Kalmeyer, V. and Zhang, S.-C. (1992). Phys. Rev. B 46, 9889.

    Article  ADS  Google Scholar 

  12. Halperin, B.I.P., Lee, A. and N. Read, (1993) Phys. Rev. B 47, 7312.

    Article  ADS  Google Scholar 

  13. Willet, R.L. (1997) Adv. Phys. 46, 447.

    Article  ADS  Google Scholar 

  14. Composite Fermions, Edited by O. Heinonen, World Scientific, Singapore (1998).

    Google Scholar 

  15. Simon, S.H.(1998) The Chern-Simons Fermi Liquid Descriptio Franctional Quantum Hall States, ibid; LANL e-print,cond-mat/0108271

    Google Scholar 

  16. Shankar, R. (2001) Theories of the Fractional Quantum Hall Effect, LANL e-print, condmat/0108271.

    Google Scholar 

  17. Extensive numerical calculations, showing an excellent overlap (such as 0.9999) of the Laughlin function with the v=l/3, 1/5 ground states obtained by exact diagonalization, convince us that the Laughlin function is the exact ground state at N→∞ for a wide class of repulsive potentials. However nobody has been able to show this analytically, except for a special short-range potential, when it gives the exact ground state for arbitrary N.

    Google Scholar 

  18. Morf, R. d’Ambrumenil, N., and Halperin, B.I. (1986) Phys. Rev. B 34, 3037.

    Article  ADS  Google Scholar 

  19. d’Ambrumenil, N. and Morf, R. (1989) Phys. Rev. B 40, 6108.

    Article  ADS  Google Scholar 

  20. Yoshioka, D., MacDonald, A.H., and Girvin, S.M. (1988).Phys. Rev. B 38, 3636

    Article  ADS  Google Scholar 

  21. Ginocchio, J.N. and Haxton, W.C. (1996). Phys. Rev. Lett. 77, 1568.

    Article  ADS  Google Scholar 

  22. Yannouleas, C. and Landman, U. (2002) LANL e-print, cond-mat/0202062.

    Google Scholar 

  23. Jain, J.K. and Kamilla, R.K (1997) Phys. Rev. B 55, 4895.

    Article  ADS  Google Scholar 

  24. Read, N. (1998) Phys. Rev. B 58,16262

    Article  ADS  Google Scholar 

  25. Dyson, F.J. (1962) J. Math. Phys. 3, 140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Mehta, M.L. (1991) Random Matrices, Academic press.

    Google Scholar 

  27. Dyakonov, M.I. to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dyakonov, M.I. (2003). Twenty Years Since the Discovery of the Fractional Quantum Hall Effect. In: Vagner, I.D., Wyder, P., Maniv, T. (eds) Recent Trends in Theory of Physical Phenomena in High Magnetic Fields. NATO Science Series, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0221-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0221-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1373-7

  • Online ISBN: 978-94-010-0221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics