Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 106))

  • 185 Accesses

Abstract

The electron spin transport in condensed matter, Spintronics, is a subject of rapidly growing interest both scientifically and from the point of view of applications to modern and future electronics. In many cases the electron spin transport cannot be described adequately without accounting for the hyperfine interaction between electron and nuclear spins. Here, the progress in physics and applications of these phenomena will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961); C. P. Slichter, Principles of magnetic resonance, (Springer Ferlag, 1991), Second Edition.

    Google Scholar 

  2. J. Winter, Magnetic Resonance in Metals (Oxford, Clarendon Press, 1971).

    Google Scholar 

  3. See for a review: M.I. Dyakonov and V.I. Perel, “Theory of optical spin orientation of electrons and nuclei in semiconductors” (In “Modern Problems in Condensed Matter Sciences”, Ed. F. Meier and B.P. Zakharchenya, North-Holand, v8, p11 (1984)).

    Google Scholar 

  4. See for a review: I.D. Vagner and T. Maniv, “Hyperfine Interaction in Quantum Hall Effect Systems”, Physica B 204, 141 (1995).

    Article  ADS  Google Scholar 

  5. See for a review: V. Privman, D. Mozyrsky, I.D. Vagner, “Quantum computing with spin qubits in semiconductor structures” Computer Physics Communications, 146, 331 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D. Shoenberg, Magnetic Oscillations in Metals, (Cambridge University Press, Cambridge, 1984).

    Book  Google Scholar 

  7. K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett., 45, 494 (1980); D. C. Tsui, H. L. Störnier and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982); R.B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983).

    Article  ADS  Google Scholar 

  8. I.D. Vagner, T. Maniv and E. Ehrenfreund, Solid St. Commun. (1982).

    Google Scholar 

  9. I.D. Vagnerand, T.Maniv, Phys.Rev.Lett., 61, 1400 (1988).

    Article  ADS  Google Scholar 

  10. T. Maniv and I.D. Vagner, Surf.Sci. 229, 134 (1990).

    Article  ADS  Google Scholar 

  11. D. Antoniou and A. MacDonald, Phys. Rev. B 43, 11686 (1991).

    Article  ADS  Google Scholar 

  12. S.V. Iordanskii, S.V. Meshkov and I.D. Vagner Phys. Rev. B 44 6554 (1991).

    Article  ADS  Google Scholar 

  13. V.I. Fal’ko, S.V. Meshkov and I.D. Vagner, J. Phys.: Condens. Matter 3, 5079 (1991).

    Article  ADS  Google Scholar 

  14. I.D. Vagner, T. Maniv and T. Salditt, in: Ed. G. Landwehr, High Magnetic Fields in Semiconductor Physics III, 131 (1992), (Springer Series in Solid State Sciences, Vol. 101, Berlin-Heidelberg).

    Google Scholar 

  15. Ju. H. Kim, I.D. Vagner and L. Xing, Phys. Rev. B. 49, 16777 (1994).

    Article  ADS  Google Scholar 

  16. Yu. N. Ovchinnikov, I.D. Vagner and A. Dyugaev, JETP Lett., 59, 569 (1994).

    ADS  Google Scholar 

  17. Yu. A. Bychkov, T. Maniv and I.D. Vagner, Solid State Commun. 94, 61 (1995).

    Article  ADS  Google Scholar 

  18. H. Bednarski, V. Fleurov, I.D. Vagner, Physica B, Vols.256-258, 641 (1998).

    Article  ADS  Google Scholar 

  19. I.D. Vagner, A.S. Rozhavsky, P. Wyder and A.Yu. Zyuzin, Phys. Rev. Lett. 80, 2417 (1998)

    Google Scholar 

  20. V.A. Cherkassky, S.N. Shevchenko, A.S. Rozhavsky, I.D. Vagner, Low Temp. Phys., 25, 541(1999).

    Article  ADS  Google Scholar 

  21. V. Privman, I.D. Vagner and G. Kventsel. Phys. Let. A 236, 141 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  22. V. Gurevich, I.D. Vagner, Physica B 284-288, 1876 (2000).

    Article  ADS  Google Scholar 

  23. A.M. Dyugaev, I.D. Vagner and P. Wyder, On the electron scattering and dephasing by nuclear spins, Cond-mat/0005005, (2000).

    Google Scholar 

  24. I. Shlimak, V.I. Safarov, I.D. Vagner, J. of Physics: Condensed Matter, 13, 6059 (2001).

    ADS  Google Scholar 

  25. D. Mozyrsky, V. Privman, L. Glasser, Phys. Rev. Lett., 86, 5112 (2001).

    Article  ADS  Google Scholar 

  26. A. Mitra and S.M. Girvin, cond-mat/0110078 (2001).

    Google Scholar 

  27. D. Mozyrsky, V. Privman, I.D. Vagner, Phys. Rev.B 63, 085313 (2001).

    Article  ADS  Google Scholar 

  28. T. Maniv, Yu. A Bychkov, I.D. Vagner, P. Wyder, Phys. Rev. B 64, 193306 (2001).

    Article  ADS  Google Scholar 

  29. W. Apel and Yu. A. Bychkov, Phys.Rev. 63, 224405 (2001).

    Google Scholar 

  30. S.I. Erlingsson, Y.V. Nazarov and V.I. Fal’ko, Phys. Rev. B64, 196306 (2001).

    ADS  Google Scholar 

  31. V. Fleurov, V.A. Ivanov, F.M. Peeters, I.D. Vagner, Physica E 14, 361 (2002).

    Article  Google Scholar 

  32. Yu. V. Pershin, S.N. Shevchenko, I.D. Vagner, P. Wyder, Phys. Rev. B 66, 035303 (2002).

    Article  ADS  Google Scholar 

  33. E.V. Bezuglyi, A.S. Rozhavsky, I.D. Vagner, P. Wyder, Phys. Rev. B 66, 052508 (2002).

    Article  ADS  Google Scholar 

  34. Y.B. Lyanda-Geller, I.L. Aleiner, and B.L. Altshuler, Phys. Rev. Lett., 89, 107602 (2002).

    Article  ADS  Google Scholar 

  35. Yu. V. Pershin, I.D. Vagner and P. Wyder, Indirect hyperfine interaction between nuclear-spin qubits in mesoscopic wires and rings, cond-mat/0011288 (2001); J. Phys. C, in press.

    Google Scholar 

  36. M. Dobers, K. von Klitzing, J. Schneider, G. Weimann and K. Ploog, Phys. Rev. Lett., 61, 1650 (1988)

    Article  ADS  Google Scholar 

  37. A. Berg, M. Dobers, R.R. Gerhardts and K.v. Klitzing, Phys.Rev.Lett.,64, 2563 (1990).

    Article  ADS  Google Scholar 

  38. B.E. Kane, L.N. Pfeiffer and K.W. West, Phys. Rev. B 46 7264 (1992).

    Article  ADS  Google Scholar 

  39. K. Wald, L.P. Kouwenhoven, P.L. McEuen, N.C. Van der Vaart, and C.T. Foxon, Phys. Rev. Lett., 73, 1011 (1994)

    Article  ADS  Google Scholar 

  40. D.C. Dixon, K.R. Wald, P.L. McEuen and M.R. Melloch, Phys. Rev. B56, 4743 (1997).

    Article  ADS  Google Scholar 

  41. S.E. Barrett, R. Tycko, L.N. Pfeifer and K.W. West, Phys. Rev. Lett., 72, 1368 (1994)

    Article  ADS  Google Scholar 

  42. S.E. Barret et al., Phys. Rev. Lett., 75, 4290 (1995)

    Article  ADS  Google Scholar 

  43. See for a review on ODNMR: R. Tycko et al., Science, 268, 1460 (1995).

    Article  ADS  Google Scholar 

  44. P. Khandelwal, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett., 81, 673 (1998)

    Article  ADS  Google Scholar 

  45. A.E. Dementyev, P. Khandelwal, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett., 83, 5074 (1999)

    Article  ADS  Google Scholar 

  46. N.N. Kuzma, P. Khandelwal, S.E. Barrett, L.N. Pfeiffer and K.W. West, Science, vol. 281, 5377, 686 (1999).

    Google Scholar 

  47. P. Khandelwal, A.E. Dementyev, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett., 86, 5353 (2001).

    Article  ADS  Google Scholar 

  48. S. Kronmuller, W. Dietsche, K. von Klitzing, G. Denninger, W. Wegscheider and M. Bichler, Phys. Rev. Lett., 82, 4070 (1999).

    Article  ADS  Google Scholar 

  49. W. Desrat, D.K. Maude, M. Potemski, J.C. Portal, Z.R. Wasilevski and G. Hill, Physica E 12, 149 (2002).

    Article  ADS  Google Scholar 

  50. N. Gauss, A.G.M. Jansen, M.H. Julien, Y. Fagot-Revurat, M. Horvatic and P. Wyder, Europhys. Lett., 49, 75 (2000).

    Article  ADS  Google Scholar 

  51. I. V. Kukushkin, K. v. Klitzing and K. Eberl, Phys. Rev. Lett., 60, 2554 (1999).

    ADS  Google Scholar 

  52. S. Vitkalov, C.R. Bowers, J. A. Simmons and J.L. Reno, Phys. Rev. B 61, 5447 (2000).

    Article  ADS  Google Scholar 

  53. S. Melinte et al., Phys. Rev. Lett., 82, 2764 (1999);S. Melinte et al., Phys. Rev. Lett., 84, 354 (2000).

    Article  ADS  Google Scholar 

  54. N. Freitag, Y. Tokunaga, M. Horvatic, C. Berthier, M. Shayegan and L.P. Levy, Phys. Rev. Lett., 87, 136801 (2001).

    Article  ADS  Google Scholar 

  55. V. Bayot, E. Grivei, S. Melinte, M.B. Santos and M. Shayegan, Phys. Rev. Lett., 76, 4584 (1996).

    Article  ADS  Google Scholar 

  56. J.N. Smet, R.A. Deutschmann, F. Ertl, W. Wegscheider, G. Abstreiter and K. von Klitzing, Nature, 415, 281 (2002).

    Article  ADS  Google Scholar 

  57. K. R. Thurber, L.E. Harrel, R. Feinchtein and D.D. Smith, Appl. Phys. Lett., 80, 1794 (2002).

    Article  ADS  Google Scholar 

  58. A.M. Dyugaev, I.D. Vagner and P. Wyder, JETP Lett. 64, 207 (1996).

    Article  ADS  Google Scholar 

  59. A.M. Dyugaev, I.D. Vagner and P. Wyder, JETP Lett. 65, 810 (1997); ibid, 73, 411 (2001).

    Article  ADS  Google Scholar 

  60. M.L. Kulic, A.I. Buzdin and L.N. Bulaevskii, Phys. Rev. B, 56, R11415 (1997); E.B. Sonin, J. Low Temp. Phys.,110, 411 (1998).

    Article  ADS  Google Scholar 

  61. S. Rehman, T. Herrmannsdörfer, and F. Pobel, Phys. Rev. Lett., 78, 1122 (1997)

    Article  ADS  Google Scholar 

  62. M. Seibold, T. Herrmannsdörfer, and F. Pobel, J. Low Temp. Phys.,110, 363 (1998)

    Article  ADS  Google Scholar 

  63. T. Herrmannsdörfer, Physica B280, 368 (2000)

    Article  ADS  Google Scholar 

  64. T. Herrmannsdörfer, S. Rehman, M. Seibold, and F. Pobel, J. Low Temp. Phys.,110, 405 (1998)

    Article  ADS  Google Scholar 

  65. T. Herrmannsdörfer and D. Tayurskii, J. Low Temp. Phys.124,, Nos. 1/2, 257 (2001).

    Article  ADS  Google Scholar 

  66. T.A. Knuuttila, J.T. Tuoriniemi, K. Lefmann, K.I. Juntunen, F.B. Rasmussen, K.K. Nummila, J. Low Temp. Physics, 123, Nos. 1/2, p.65 (2001).

    Article  ADS  Google Scholar 

  67. A.S. Oja and O.V. Lounasmaa, Rev. Mod Phys., 69, 1 (1997).

    Article  ADS  Google Scholar 

  68. Yu. A. Bychkov, S.V. Iordanskii, G.M. Eliashberg, Pis’ma Zh.Eksp.Teor.Fiz. 33, 152 (1981); Sov. Phys-JETP Lett. 33, 143 (1981);C. Kallin and B.I. Halperin, Phys. Rev. B30 5655 (1984).

    Google Scholar 

  69. Yu. A. Bychkov and E.I. Rashba, J. Phys. C: Solid State Phys., 17, 6039 (1984).

    Article  ADS  Google Scholar 

  70. D.H. Lee, and C.L. Kane, Phys. Rev Lett. 64, 1313 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. S.L. Sondhi, A. Karlhede, S.A. Kivelson, and E.H. Rezayi, Phys. Rev.B47, 16419 (1993)

    Article  ADS  Google Scholar 

  72. L. Brey, H.A. Fertig, R. Cote, and A.H. MacDonald, Phys. Rev. Lett, 75, 2562 (1995).

    Article  ADS  Google Scholar 

  73. Yu. A. Bychkov, T. Maniv and I.D. Vagner, Phys. Rev. B 53, 10148 (1996); See for a review: I.D. Vagner, Yu. A. Bychkov, A.M. Dyugaev and T. Maniv, Hyperfine interactions and spin textures in quantum Hall systems, Physica Scripta, T66, 158 (1996).

    Article  ADS  Google Scholar 

  74. Yu. A. Bychkov, A. Kolesnikov, T. Maniv and I.D. Vagner, J. Phys. Condensed Matter, 10, 2029 (1998).

    Article  ADS  Google Scholar 

  75. A.J. Nederveen and Yu. V. Nazarov, Phys. Rev. Lett.,82, 406 (1999).

    Article  ADS  Google Scholar 

  76. T. Rowlend, Phys. Rev., 119, 900 (1960).

    Article  ADS  Google Scholar 

  77. P. Averbuch, F de Bergevin and W. Mulers-Waryanth CRAS, 249, 2315 (1959); P. Averbuch, CRAS, 253, 2674 (1961).

    Google Scholar 

  78. P. Mohanty, Ann. Phys. (Leipzig) 8, 549 (1999); M.E. Gershenson, Ann. Phys. (Leipzig) 8, 559(1999).

    Article  ADS  Google Scholar 

  79. A.B. Gougam, F. Pierre, H. Pothier, D.Esteve and N.O. Birge, cond-mat/9912137

    Google Scholar 

  80. B. Altshuler, A. Aronov and D. Khmelnitskii, J. Phys. C. 15, 7367 (1982)

    Article  ADS  Google Scholar 

  81. B. Altshuler and A.G. Aronov, in Electron-Electron Interaction in Disordered Systems, edited by A.L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).

    Google Scholar 

  82. V.E. Kravtsov and B.L. Altshuler, Phys. Rev. Lett., 84, 3394 (2000)

    Article  ADS  Google Scholar 

  83. A. Zawadowski, Jan von Delft and D.C. Ralph, Phys. Rev. Lett. 83, 2632 (1999).

    Article  ADS  Google Scholar 

  84. V.L. Ginzburg, Sov. Phys. JETP, 4, 153 (1957).

    MATH  Google Scholar 

  85. A.M. Dyugaev, I.D. Vagner and P. Wyder, Nuclear ferromagnetism induced FFLO state, condmat/0112286 (2001)

    Google Scholar 

  86. P. Fulde, R.A. Ferrel, Phys. Rev. 135, 1550 (1964)

    Article  ADS  Google Scholar 

  87. A.I. Larkin, Yu.N. Ovchinnikov, J. Exp. Theor. Phys., 47, 1136 (1964) (Sov. Phys.,-JETP, 20, 762 (1965)).

    Google Scholar 

  88. G. Lampel, Phys. Rev. Lett., 20, 491 (1968); D. Paget, G. Lampel, B. Sapoval and V. I. Safarov, Phys. Rev. B 15, 5780 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vagner, I.D. (2003). Nuclear Spintronics. In: Vagner, I.D., Wyder, P., Maniv, T. (eds) Recent Trends in Theory of Physical Phenomena in High Magnetic Fields. NATO Science Series, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0221-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0221-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1373-7

  • Online ISBN: 978-94-010-0221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics