Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 106))

  • 184 Accesses

Abstract

In this paper we review recent findings on the possibility of electron confinement through local nuclear spin polarization into low-dimensional electron systems such as quantum dots, wires and rings. In the proposed systems, the spatially nonhomogeneously spin polarized nuclei create on effective hyperfine field which confines the electrons with spins opposite to the hyperfine field in the regions of maximal nuclear spin polarization. The properties of such systems are time-dependent because of nuclear spin relaxation and diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quantum Dots, edited by L. Jacak, P. Hawrylak, and A. Wojs (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  2. M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990).

    Article  ADS  Google Scholar 

  3. M. L. Leadbeater, S. J. Allen, Jr., F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991)

    Article  ADS  Google Scholar 

  4. K. M. Krishnan, Appl. Phys. Lett. 61, 2365 (1992).

    Article  ADS  Google Scholar 

  5. S. J. Bending, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 65, 1060 (1990).

    Article  ADS  Google Scholar 

  6. M. L. Leadbeater, C. L. Foden, T. M. Burke, J. H. Burroughes, M. P. Grimshaw, D. A. Ritchie, L. L. Wang, and M. Pepper, J. Phys. Condens. Matter 7, L307 (1995).

    Article  ADS  Google Scholar 

  7. F. M. Peeters and A. Matulis, Phys. Rev. B 48, 15166 (1993).

    ADS  Google Scholar 

  8. I. S. Ibrahim, V. A. Schweigert, and F. M. Peeters, Phys. Rev. B 56, 7508 (1997).

    Article  ADS  Google Scholar 

  9. J. Reijniers, F. M. Peeters, and A. Matulis, Phys. Rev. B 59, 2817 (1999).

    Article  ADS  Google Scholar 

  10. For a review see F. M. Peeters and J. De Boeck, in Handbook of nanostructured materials and nanotechnology, edited by H. S. Nalwa, Vol. 3 (Academic Press, New York, 1999), p. 345.

    Google Scholar 

  11. L. Solimany and B. Kramer, Solid State Commun. 96, 471 (1995).

    Article  ADS  Google Scholar 

  12. H.-S. Sim, K.-H. Ann, K. J. Chang, G. Ihm, N. Kim, and S. J. Lee, Phys. Rev. Lett. 80, 1501 (1998).

    Article  ADS  Google Scholar 

  13. N. Kim, G. Ihm, H.-S. Sim, and K. J. Chang, Phys. Rev. B 60, 8767 (1999).

    Article  ADS  Google Scholar 

  14. N. Kim, G. Ihm, H.-S. Sim, and T. W. Kang, Phys. Rev. B 63, 235317 (2001).

    Article  ADS  Google Scholar 

  15. H.-S. Sim, G. Ihm, N. Kim, and K. J. Chang, Phys. Rev. Lett. 87, 146601 (2001).

    Article  ADS  Google Scholar 

  16. I. D. Vagner, A. S. Rozhavsky, P. Wyder, and A. Yu. Zyuzin, Phys. Rev. Lett. 80, 2417 (1998).

    Article  ADS  Google Scholar 

  17. V. A. Cherkaskiy, S. N. Shevchenko, A. S. Rozhavsky, and I. D. Vagner, Low Temp. Phys., 25, 541 (1999).

    Article  ADS  Google Scholar 

  18. V. Fleurov, V. A. Ivanov, F. M. Peeters, and I. D. Vagner, cond-mat/0109271 (2001), Physica E (to be published).

    Google Scholar 

  19. Yu. V. Pershin, S. N. Shevchenko, I. D. Vagner, and P. Wyder, cond-mat/0109459, Phys. Rev. B (to be published).

    Google Scholar 

  20. P. Raghavan, Table of Nuclear Moments, in Atomic and Nuclear Data Tables 42, 189 (1989).

    Article  ADS  Google Scholar 

  21. N. E. Holden, Table of the Isotopes, in CRC Handbook of Chemistry and Physics edited by D. R. Lide (74th Ed., CRC Press, Boca Ranton, FL, 1993).

    Google Scholar 

  22. K. Takyu, K. M. Itoh, K. Oka, N. Saito, and V. I. Ozhogin, Jpn. J. Appl. Phys., 38, L1493 (1999).

    Article  ADS  Google Scholar 

  23. K. Monta, K. M. Itoh, J. Muto, K. Mizoguchi, N. Usami, Y Shiraki, and E. E. Haller, Thin Solid Films 369, 405 (2000).

    Article  ADS  Google Scholar 

  24. K. M. Itoh and E. E. Haller, Physica E 10, 463 (2001).

    Article  ADS  Google Scholar 

  25. C. P. Slichter, Principles of Magnetic Resonance, 2nd ed. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  26. K. R. Wald, L. P. Kouwenhoven, P. L. McEuen, N. C. van der Vaart, and C. T. Foxon, Phys. Rev. Lett. 73, 1011 (1994).

    Article  ADS  Google Scholar 

  27. A. Berg, M. Dobers, R. R. Gerhardts, and K. v. Klitzing, Phys. Rev. Lett. 64, 2563 (1990).

    Article  ADS  Google Scholar 

  28. P. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780 (1977).

    Article  ADS  Google Scholar 

  29. G. Lampel, Phys. Rev. Lett. 20, 491 (1968).

    Article  ADS  Google Scholar 

  30. Optical Orientation, edited by F. Meier and B. P. Zakharchenya (Elsevier, Amsterdam, 1984).

    Google Scholar 

  31. S. E. Barrett, R. Tycko, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72, 1368 (1994).

    Article  ADS  Google Scholar 

  32. For a review see R. Tycko, S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, and K. W. West, Science 268, 1460 (1995).

    Article  ADS  Google Scholar 

  33. B. E. Kane, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 46, 7264 (1992).

    Article  ADS  Google Scholar 

  34. D. Wolf, Spin-Temperature and Nuclear-Spin Relaxation in Matter (Clarendon press, Oxford, 1979).

    Google Scholar 

  35. A. Malinovsky, M.A. Brand, and R. T. Harley, Physica E 10, 13 (2001).

    Article  ADS  Google Scholar 

  36. D. Pines, J. Bardeen, C. P. Slichter, Phys. Rev. 106, 489 (1957).

    Article  ADS  Google Scholar 

  37. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, C. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  38. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie and G. A. C. Jones, J. Phys. C 21, L209 (1988).

    Article  ADS  Google Scholar 

  39. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  40. R. Landauer, in Localization, Interaction and Transport Phenomena, edited by G. Bergmann and Y. Bruynseraede (Springer, New York, 1985).

    Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), 3rd ed. (Pergamon, London, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pershin, Y.V. (2003). Nuclear-Spin-Polarization-Induced Low-Dimensional Electron Structures. In: Vagner, I.D., Wyder, P., Maniv, T. (eds) Recent Trends in Theory of Physical Phenomena in High Magnetic Fields. NATO Science Series, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0221-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0221-9_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1373-7

  • Online ISBN: 978-94-010-0221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics