Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 104))

  • 345 Accesses

Abstract

Vacuum selection is one of the most important issues in string/M theory. The standard cartoon of string vacua (see figure 1) showing all the ten dimensional perturbative string asymptopia together with the eleven-dimensional limit, refers to solutions with a large number of supersymmetries, and flat directions (moduli) in the effective action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Burgess et. al., “The inflationary brane-antibrane universe,” JHEP 07 (2001) 047, http://arXiv.org/abs/hep-th/0105204/abs/hep-th/0105204.

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Sen, “Non-BPS states and branes in string theory,” http://arXiv.org/abs/hep-th/9904207/abs/hep-th/9904207.

  3. E. Witten, “D-branes and K-theory,” JHEP 12 (1998) 019, http://arXiv.org/abs/hep-th/9810188/abs/hep-th/9810188.

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, “2-d gravity and random matrices,” Phys. Kept. 254 (1995) 1–133, http://arXiv.org/abs/hep-th/9306153/abs/hep-th/9306153.

    ADS  Google Scholar 

  5. P. Ginsparg and G. W. Moore, “Lectures on 2-d gravity and 2-d string theory,” http://arXiv.org/abs/hep-th/9304011/abs/hep-th/9304011.

  6. A. Sen, “Rolling tachyon,” JHEP 04 (2002) 048, http://arXiv.org/abs/hep-th/0203211/abs/hep-th/0203211.

    Article  ADS  Google Scholar 

  7. A. Sen, “Tachyon matter,” http://arXiv.org/abs/hep-th/0203265/abs/hep-th/0203265.

  8. M. Gutperle and A. Strominger, “Spacelike branes,” JHEP 04 (2002) 018, http://arXiv.org/abs/hep-th/0202210/abs/hep-th/0202210.

  9. J. Polchinski. “String theory. vol. 1: An introduction to the bosonic string,”. Cambridge, UK: Univ. Pr. (1998) 402 p.

    Google Scholar 

  10. E. S. Fradkin and A. A. Tseytlin, “Nonlinear electrodynamics from quantized strings,” Phys. Lett. B163 (1985) 123.

    MathSciNet  ADS  Google Scholar 

  11. A. A. Tseytlin, “Vector field effective action in the open superstring theory,” Nucl. Phys. B276 (1986) 391.

    Article  MathSciNet  ADS  Google Scholar 

  12. R. R. Metsaev, M. A. Rakhmanov, and A. A. Tseytlin, “The Born-Infeld action as the effective action in the open superstring theory,” Phys. Lett. B193 (1987) 207.

    MathSciNet  ADS  Google Scholar 

  13. A. Abouelsaood, C. G. Callan, C. R. Nappi, and S. A. Yost, “Open strings in background gauge fields,” Nucl. Phys. B280 (1987) 599.

    Article  MathSciNet  ADS  Google Scholar 

  14. A. A. Tseytlin, “String vacuum backgrounds with covariantly constant null killing vector and 2-d quantum gravity,” Nucl. Phys. B390 (1993) 153–172, http://arXiv.org/abs/hep-th/9209023/abs/hep-th/9209023.

    Article  MathSciNet  ADS  Google Scholar 

  15. J. A. Harvey, D. Kutasov, and E. J. Martinec, “On the relevance of tachyons,” http://arXiv.org/abs/hep-th/0003101/abs/hep-th/0003101.

  16. J. A. Harvey, D. Kutasov, E. J. Martinec, and G. Moore, “Localized tachyons and RG flows,” http://arXiv.org/abs/hep-th/0111154/abs/hep-th/0111154.

  17. R. C. Myers, “Dielectric-branes,” JHEP 12 (1999) 022, http://arXiv.org/abs/hep-th/9910053/abs/hep-th/9910053.

    Article  ADS  Google Scholar 

  18. K. G. Wilson, “The renormalization group: Critical phenomena and the Kondo problem,” Rev. Mod. Phys. 47 (1975) 773.

    Article  ADS  Google Scholar 

  19. I. Affleck, “Conformai field theory approach to the Kondo effect,” Acta Phys. Polon. B26 (1995) 1869–1932, http://arXiv.org/abs/cond-mat/9512099/abs/cond-mat/9512099.

    MathSciNet  Google Scholar 

  20. L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, “The conformai field theory of orbifolds,” Nucl. Phys. B282 (1987) 13–73.

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Hamidi and C. Vafa, “Interactions on orbifolds,” Nucl. Phys. B279 (1987) 465.

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Bershadsky and A. Radul, “Conformai field theories with additional Z(n) symmetry,” Int. J. Mod. Phys. A2 (1987) 165–178.

    MathSciNet  ADS  Google Scholar 

  23. A. Sen and B. Zwiebach, “Tachyon condensation in string field theory,” JHEP 03 (2000) 002, http://arXiv.org/abs/hep-th/9912249/abs/hep-th/9912249.

    Article  MathSciNet  ADS  Google Scholar 

  24. J. A. Harvey, P. Kraus, F. Larsen, and E. J. Martinec, “D-branes and strings as non-commutative solitons,” JHEP 07 (2000) 042, http://arXiv.org/abs/hep-th/0005031/abs/hep-th/0005031.

    Article  MathSciNet  ADS  Google Scholar 

  25. A. A. Gerasimov and S. L. Shatashvili, “On exact tachyon potential in open string field theory,” JHEP 10 (2000) 034, http://arXiv.org/abs/hep-th/0009103/abs/hep-th/0009103.

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Kutasov, M. Marino, and G. W. Moore, “Some exact results on tachyon condensation in string field theory,” JHEP 10 (2000) 045, http://arXiv.org/abs/hep-th/0009148/abs/hep-th/0009148.

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Kutasov, M. Marino, and G. W. Moore, “Remarks on tachyon condensation in superstring field theory,” http://arXiv.org/abs/hep-th/0010108/abs/hep-th/0010108.

  28. T. Banks and E. J. Martinec, “The renormalization group and string field theory,” Nucl. Phys. B294 (1987) 733.

    Article  MathSciNet  ADS  Google Scholar 

  29. A. A. Tseytlin, “Renormalization of Mobius infinities and partition function representation for string theory effective action,” Phys. Lett. B202 (1988) 81.

    MathSciNet  ADS  Google Scholar 

  30. O. D. Andreev and A. A. Tseytlin, “Partition function representation for the open superstring effective action: Cancellation of Mobius infinities and derivative corrections to Born-Infeld lagrangian,” Nucl. Phys. B311 (1988) 205.

    Article  MathSciNet  ADS  Google Scholar 

  31. V. Niarchos and N. Prezas, “Boundary superstring field theory,” Nucl. Phys. B619 (2001) 51–74, http://arXiv.org/abs/hep-th/0103102/abs/hep-th/0103102.

    Article  MathSciNet  ADS  Google Scholar 

  32. E. Gava, K. S. Narain, and M. H. Sarmadi, “On the bound states of p-and (p+2)-branes,” Nucl. Phys. B504 (1997) 214–238, http://arXiv.org/abs/hep-th/9704006/abs/hep-th/9704006.

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Elitzur, E. Rabinovici, and G. Sarkisian, “On least action D-branes,” Nucl. Phys. B541 (1999) 246–264, http://arXiv.org/abs/hep-th/9807161/abs/hep-th/9807161.

    Article  ADS  Google Scholar 

  34. P. Kraus and F. Larsen, “Boundary string field theory of the DD-bar system,” Phys. Rev. D63 (2001) 106004, http://arXiv.org/abs/hep-th/0012198/abs/hep-th/0012198.

    MathSciNet  ADS  Google Scholar 

  35. T. Takayanagi, S. Terashima, and T. Uesugi, “Brane-antibrane action from boundary string field theory,” JHEP 03 (2001) 019, http://arXiv.org/abs/hep-th/0012210/abs/hep-th/0012210.

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Marino, “On the BV formulation of boundary superstring field theory,” JHEP 06 (2001) 059, http://arXiv.org/abs/hep-th/0103089/abs/hep-th/0103089.

    Article  ADS  Google Scholar 

  37. J. Liu and J. Polchinski, “Renormalization of the Mobius volume,” Phys. Lett. B203 (1988) 39.

    MathSciNet  ADS  Google Scholar 

  38. A. A. Tseytlin, “Mobius infinity subtraction and effective action in sigma model approach to closed string theory,” Phys. Lett. B208 (1988) 221.

    MathSciNet  ADS  Google Scholar 

  39. P. Horava, “Type IIa D-branes, K-theory, and matrix theory,” Adv. Theor. Math. Phys. 2 (1999) 1373–1404, http://arXiv.org/abs/hep-th/9812135/abs/hep-th/9812135.

    MathSciNet  Google Scholar 

  40. R. Minasian and G. W. Moore, “K-theory and Ramond-Ramond charge,” JHEP 11 (1997) 002, http://arXiv.org/abs/hep-th/9710230/abs/hep-th/9710230v.

    Article  MathSciNet  ADS  Google Scholar 

  41. M. R. Douglas, “D-branes and N=1 supersymmetry,” http://arXiv.org/abs/hep-th/0105014/abs/hep-th/0105014.

  42. L. J. Dixon, “Some world sheet properties of superstring compactifications, on orbifolds and otherwise,”. Lectures given at the 1987 ICTP Summer Workshop in High Energy Phsyics and Cosmology, Trieste, Italy, Jun 29-Aug 7, 1987.

    Google Scholar 

  43. T. Banks and L. J. Dixon, “Constraints on string vacua with space-time supersymmetry,” Nucl. Phys. B307 (1988) 93–108.

    Article  MathSciNet  ADS  Google Scholar 

  44. J. Polchinski, “String theory. vol. 2: Superstring theory and beyond,”. Cambridge, UK: Univ. Pr. (1998) 531 p.

    Google Scholar 

  45. H. Ooguri, Y. Oz, and Z. Yin, “D-branes on Calabi-Yau spaces and their mirrors,” Nucl. Phys. B477 (1996) 407–430, http://arXiv.org/abs/hep-th/9606112/abs/hep-th/9606112.

    Article  MathSciNet  ADS  Google Scholar 

  46. C. Bachas, M. R. Douglas, and C. Schweigert, “Flux stabilization of D-branes,” JEEP 05 (2000) 048, http://arXiv.org/abs/hep-th/0003037/abs/hep-th/0003037.

    MathSciNet  Google Scholar 

  47. A. Y. Alekseev, A. Recknagel, and V. Schomerus, “Brane dynamics in background fluxes and non-commutative geometry,” JEEP 05 (2000) 010, http://arXiv.org/abs/hep-th/0003187/abs/hep-th/0003187.

    MathSciNet  Google Scholar 

  48. S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici, and G. Sarkissian, “D-branes in the background of NS fivebranes,” JEEP 08 (2000) 046, http://arXiv.org/abs/hep-th/0005052/abs/hep-th/0005052.

    MathSciNet  Google Scholar 

  49. I. Affleck and A. W. W. Ludwig, “Universal noninteger’ ground state degeneracy’ in critical quantum systems,” Phys. Rev. Lett. 67 (1991) 161–164.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. A. B. Zamolodchikov, “’Irreversibility’ of the flux of the renormalization group in a 2-d field theory,” JETP Lett. 43 (1986) 730–732.

    MathSciNet  ADS  Google Scholar 

  51. A. A. Tseytlin, “Conditions of Weyl invariance of two-dimensional sigma model from equations of stationarity of’ central charge’ action,” Phys. Lett. B194 (1987) 63.

    MathSciNet  ADS  Google Scholar 

  52. A. Dabholkar and C. Vafa, “tt* geometry and closed string tachyon potential,” JEEP 02 (2002) 008, http://arXiv.org/abs/hep-th/0111155/abs/hep-th/0111155.

    MathSciNet  Google Scholar 

  53. D. Kutasov, “Irreversibility of the renormalization group flow in two-dimensional quantum gravity,” Mod. Phys. Lett. A7 (1992) 2943–2956, http://arXiv.org/abs/hep-th/9207064/abs/hep-th/9207064.

    MathSciNet  ADS  Google Scholar 

  54. A. Adams, J. Polchinski, and E. Silverstein, “Don’t panic! closed string tachyons in ALE space-times,” JEEP 10 (2001) 029, http://arXiv.org/abs/hep-th/0108075/abs/hep-th/0108075.

    MathSciNet  Google Scholar 

  55. W. Lerche, C. Vafa, and N. P. Warner, “Chiral rings in N=2 superconformai theories,” Nucl. Phys. B324 (1989) 427.

    Article  MathSciNet  ADS  Google Scholar 

  56. S. Cecotti and C. Vafa, “Massive orbifolds,” Mod. Phys. Lett. A7 (1992) 1715–1724, http://arXiv.org/abs/hep-th/9203066/abs/hep-th/9203066.

    MathSciNet  ADS  Google Scholar 

  57. D. Anselmi, M. Billo, P. Fre, L. Girardello, and A. Zaffaroni, “ALE manifolds and conformai field theories,” Int. J. Mod. Phys. A9 (1994) 3007–3058, http://arXiv.org/abs/hep-th/9304135/abs/hep-th/9304135.

    MathSciNet  ADS  Google Scholar 

  58. W. Fulton, “Introduction to toric varieties,”. Annals of Mathematics Studies, vol. 131; Princeton Univ. Press (1993).

    Google Scholar 

  59. E. Witten, “Phases of N=2 theories in two dimensions,” Nucl. Phys. B403 (1993) 159–222, http://arXiv.org/abs/hep-th/9301042/abs/hep-th/9301042.

    Article  MathSciNet  ADS  Google Scholar 

  60. D. R. Morrison and M. Ronen Plesser, “Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties,” Nucl. Phys. B440 (1995) 279–354, http://arXiv.org/abs/hep-th/9412236/abs/hep-th/9412236.

    Article  ADS  Google Scholar 

  61. C. Vafa, “Mirror symmetry and closed string tachyon condensation,” http://arXiv.org/abs/hep-th/0111051/abs/hep-th/0111051.

  62. E. Martinec and G. Moore, to appear.

    Google Scholar 

  63. B. R. Greene and M. R. Plesser, “Mirror manifolds: A brief review and progress report,” http://arXiv.org/abs/hep-th/9110014/abs/hep-th/9110014.

  64. P. S. Aspinwall, “Resolution of orbifold singularities in string theory,” http://arXiv.org/abs/hep-th/9403123/abs/hep-th/9403123.

  65. P. S. Aspinwall, B. R. Greene, and D. R. Morrison, “Measuring small distances in N=2 sigma models,” Nucl. Phys. B420 (1994) 184–242, http://arXiv.org/abs/hep-th/9311042/abs/hep-th/9311042.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martinec, E.J. (2003). Defects, Decay, And Dissipated States. In: Baulieu, L., Rabinovici, E., Harvey, J., Pioline, B., Windey, P. (eds) Progress in String, Field and Particle Theory. NATO Science Series, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0211-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0211-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1361-4

  • Online ISBN: 978-94-010-0211-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics