Singular And Smooth Time-Dependent Orbifolds

  • Michal Fabinger
Part of the NATO Science Series book series (NAII, volume 104)


We consider string theory in a smooth time-dependent orbifold of Minkowski space, which is known as the ‘null-brane’, and whose limit reproduces a spacetime with a null singularity — the parabolic orbifold. We show that adding particles of small enough energy to the geometry does not cause a gravitational collapse. The null-brane is a well-behaved background of string theory where it is possible to compute string scattering amplitudes using perturbation theory. We also mention another way of making the parabolic orbifold smooth — besides considering the null-brane.


Gravitational Collapse Tree Level Amplitude Parabolic Element Orbifold Group Frame Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Liu, G. Moore and N. Seiberg, JHEP 0206:045,2002.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    G. T. Horowitz and A. R. Steif, Phys. Lett. B 258, 91 (1991).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Fabinger and J. McGreevy, hep-th/0206196.Google Scholar
  4. 4.
    J. Figueroa-O’F arrill and J. Simon, JHEP 0112, 011 (2001): J. Simón. JHEP 0206:001,2002.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H. Liu, G. Moore and N. Seiberg, JHEP 0210:031,2002MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    G. T. Horowitz and J. Polchinski, Phys. Rev. D 66, 103512 (2002).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M. Fabinger and S. Hellerman, hep-th/0212223.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Michal Fabinger
    • 1
  1. 1.Stanford University and SLACStanfordUSA

Personalised recommendations