Skip to main content

Chemical reactivity of free and supported metal clusters

  • Conference paper
Metal-Ligand Interactions

Part of the book series: NATO Science Series ((NAII,volume 116))

Abstract

The study of the chemical properties of metal clusters is a growing field of research. It is motivated by possible connections with industrial catalytic processes. In addition, one aims to control and tune chemical and catalytic reactions by simply changing cluster size. In this context, the extreme localization of valence electrons of clusters is most important and leads to strong quantum size effects. Clusters are therefore also considered as building blocks for nanocatalysis. The use of model systems will allow obtaining a fundamental understanding of their physical and chemical properties. Such model systems can consist of free size-selected clusters or clusters stabilized on surfaces. Size selection is important, as the evolution of the cluster’s properties with size is distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Whetten, R.L., Cox, D.M., Trevor, D.J., and Kaldor, A. (1985) Phys. Rev. Lett. 54, 1494.

    Article  CAS  Google Scholar 

  2. Morse, M.D., Geusic, M.E., Heath, J.R., and Smalley, R.E. (1985) Surface reaction of metal clusters. II Reactivity surveys with D2, N2, and CO J Chem. Phys. 83, 2293.

    Article  CAS  Google Scholar 

  3. Holmgren, L. and Rosén, A. (1999) Vanadium clusters: Reactivity with CO, NO., O2, D2, and N2 J. Chem. Phys. 110, 2629–2636.

    Article  CAS  Google Scholar 

  4. Socaciu, L.D., Hagen, J., Bernhardt, T.M., Wöste, L., Heiz, U., Häkkinen, H., and Landman, U. (2002) Catalytic CO Oxidation by free Au2: Experiment and Theory J. Am. Chem. Soc. submitted.

    Google Scholar 

  5. Fayet, P., Granzer, F., Hegenbart, G., Moisar, E., Pischel, B., and Woeste, L. (1985) Latent Image Formation Phys. Rev. Lett. 55, 3002.

    Article  CAS  Google Scholar 

  6. Rosche, C., Wolf, S., Leisner, T., Granzer, F., and Wöste, L. (1994) The generation of the latent image by soft deposition of size-selected silver clusters J. Chem. Phys. 1, 54–56.

    CAS  Google Scholar 

  7. Jarrold, M.F. (1983) Nanosurface chemistry on size-selected silicon clusters Science 252, 1085–1092.

    Google Scholar 

  8. Xu, Z., Xiao, F.-S., Purneil, S.K., Alexeev, O., Kawi, S., Deutsch, S.E., and Gates, B.C. (1994) Size-dependant catalytic activity of supported metal clusters Nature 372, 346–348.

    Article  CAS  Google Scholar 

  9. Pacchioni, G. (2000) Quantum chemistry of oxide surfaces: from CO chemisorption to the identification of the structure and nature of point defects on MgO Surf. Rev. Lett. 7, 277.

    CAS  Google Scholar 

  10. Di Valentin, C., Del Vitto, A., Pacchioni, G., Abbet, S., Wörz, A.S., Judai, K., and Heiz, U. (2002) Chemisorption and reactivity of methanol on MgO thin films J. Phys. Chem. B, in print.

    Google Scholar 

  11. Sanchez, A., Abbet, S., Heiz, U., Schneider, W.-D., Häkkinen, H., Barnett, R.N., and Landman, U. (1999) When gold is not noble: Nano-scale gold catalysts J. Phys. Chem. A 103, 9573–9578.

    Article  CAS  Google Scholar 

  12. Heiz, U., Vanolli, F., Trento, L., and Schneider, W.-D. (1997) Chemical reactivity of size-selected supported clusters: An experimental setup Rev. Sci. Instrum. 68, 1986.

    Article  CAS  Google Scholar 

  13. Heiz, U. and Schneider, W.-D. (2000) Nanoassembled model catalysts J. Phys. D: Appl. Phys. 33, R85–R102.

    Article  CAS  Google Scholar 

  14. He, J.-W. and Møller, P.L. (1986) On the defect center electron energy loss structures from MgO surfaces Chem. Phys. Lett. 129, 13.

    Article  CAS  Google Scholar 

  15. Peterka, D., Tegenkamp, C., Schröder, K.M., Ernst, W., and Pfnür, H. (1999) Oxygen surplus and oxygen vacancies on the surface of epitaxial MgO layers grown on Ag(100) Surf. Sci. 431, 146–155.

    Article  CAS  Google Scholar 

  16. Illas, F. and Pacchioni, G. (1998) J. Chem. Phys. 108, 7835–7842.

    Article  CAS  Google Scholar 

  17. de Heer, W.A. (1993) The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676.

    Article  Google Scholar 

  18. Dietz, T.G., Duncan, M.A., Powers, D.E., and Smalley, R.E. (1981) Laser production of supersonic metal cluster beams J. Chem. Phys 74, 6511–6512.

    Article  CAS  Google Scholar 

  19. Siekmann, H.R., Lüder, C., Fährmann, J., Lutz, H.O., and Meiwes-Broer, K.H. (1990) The pulsed arc cluster ion source (PACIS) Z Phys. D 20, 417–420.

    Article  Google Scholar 

  20. Keller, R., Nöhmeier, F., Spädtke, P., and Schönenberg, M.H. (1984) Vacuum 34, 31.

    Article  CAS  Google Scholar 

  21. Cox, D.M., C., R.K., Trevor, D.J., and Kaldor, A. (1988) CO chemisorption on free gas phase metal clusters J. Chem. Phys. 88, 111.

    Article  CAS  Google Scholar 

  22. Parks, E.K., Klotz, T.D., and Riley, S.J. (1990) J. Chem. Phys. 92, 3813.

    Article  CAS  Google Scholar 

  23. Ren, X., Hintz, P.A., and Ervin, K.M. (1993) J. Chem. Phys. 99, 3575.

    Article  CAS  Google Scholar 

  24. Leuchtner, R.E., Harms, A.C., and Castelman, A.W., Jr. (1990) J. Chem. Phys. 92, 6527.

    Article  CAS  Google Scholar 

  25. Jiao, C.Q. and Freiser, B.S. (1995) J. Phys. Chem. 99, 10723.

    Article  CAS  Google Scholar 

  26. Alford, J.M., Weiss, F.D., Laaksonen, R.T., and Smalley, R.E. (1986) J. Phys. Chem. 90, 4480.

    Article  CAS  Google Scholar 

  27. Shi, Y. and Ervin, K.M. (1998) Catalytic oxidation of carbon monoxide by platinum cluster anions J. Chem. Phys. 108, 1757–1760.

    Article  CAS  Google Scholar 

  28. Socaciu, L.D., Hagen, J., Heiz, U., Bernhardt, T.M., Leisner, T., and Wöste, L. (2001) Reaction Mechanism for the Oxidation of free Silver Dimers Chem. Phys. Lett. 340, 282.

    Article  CAS  Google Scholar 

  29. Hagen, J., Socaciu, L.D., Elijazyfer, M., Heiz, U., Bernhardt, T.M., and Wöste, L. (2002) Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: Model complex for catalytic CO oxidation Phys. Chem. Chem. Phys. 4, 1707.

    Article  CAS  Google Scholar 

  30. Wallace, W.T. and Whetten, R.L. (2002) Coadsorption of CO and O2 on Selected Gold Clusters: Evidence for Efficient Room-Temperature CO2 Generation J. Am. Chem. Soc. 124, 7499.

    Article  CAS  Google Scholar 

  31. Häkkinen, H. and Landman, U. (2001) J. Am. Chem. Soc. 123.

    Google Scholar 

  32. Cox, D.M., Brickman, R., Creegan, K., and Kaldor, A. (1991) Gold clusters: reactions and deuteium uptake Z. Phys. D 19, 353–355.

    Google Scholar 

  33. Cox, D.M., Brickman, R.O., Creegan, K., and Kaldor, A. (1991) Studies of the chemical properties of size selected metal clusters: kinetics and saturation Mater. Res. Soc. Symp. Proc 206, 43–48.

    Article  CAS  Google Scholar 

  34. Wallace, W.T. and Whetten, R.L. (2000) J. Phys. Chem. B 104, 10964.

    Article  CAS  Google Scholar 

  35. Hagen, J., Socaciu, L.D., Elijazyfer, M., Heiz, U., Bernhardt, T.M., and Wöste, L. (2002), to be published.

    Google Scholar 

  36. Steinfeld, J.I., Francisco, J.S., and Hase, W.L. (1999) Chemical Kinetics and Dynamics, Upper Saddle River, New Jersey.

    Google Scholar 

  37. Huber, H., Mcintosh, D., and Ozin, G.A. (1977) Inorg. Chem. 16, 675.

    Google Scholar 

  38. Heiz, U. (1998) Size-Selected, Supported Clusters: The Interaction of Carbon Monoxide with Nickel Clusters Appl. Phys. A 67, 621–626.

    Article  CAS  Google Scholar 

  39. Abbet, S., Judai, K., Klinger, L., and Heiz, U. (2002) Synthesis of monodispersed model catalysts by using softlanding cluster deposition Pure and Appl. Chem 74, 1527

    Article  CAS  Google Scholar 

  40. Abbet, S., Riedo, E., Brune, H., Heiz, U., Ferrari, A.M., Giordano, L., and Pacchioni, G. (2001) Identification of density defect sites on MgO(100) thin films by decoration with Pd atoms and studying CO adsorption properties J. Am. Chem. Soc. 123, 6172–6178.

    Article  CAS  Google Scholar 

  41. Redhead, P.A. (1962) Thermal desorption of Gases Vacuum 12, 203.

    Article  CAS  Google Scholar 

  42. Abbet, S., Sanchez, A., Heiz, U., and Schneider, W.-D. (2001) Tuning the Selectivity of Acetylene Polymerization Atom-by-Atom. J. Catal. 198, 122–127.

    Article  CAS  Google Scholar 

  43. Judai, K., Wörz, A.S., Abbet, S., and Heiz, U. (2002), to be published.

    Google Scholar 

  44. Ormerod, R.M. and Lambert, R.M. (1992) Critical Ensemble Required for Acetylene Cyclization on Pd(111): A Study of Steric Inhibition by Coadsorbed Oxygen J. Phys. Chem. 96, 8111–8116.

    Article  CAS  Google Scholar 

  45. Abbet, S., Sanchez, A., Heiz, U., Schneider, W.-D., Ferrari, A.M., Pacchioni, G., and Rösch, N. (2000) Acetylene Cyclotrimerization on supported size-selected Pdn clusters (l<n<30): One atom is enough! J. Am. Chem. Soc. 122, 3453–3457.

    Article  CAS  Google Scholar 

  46. Ferrari, A.M., Giordano, L., Rösch, N., Heiz, U., Abbet, S., Sanchez, A., and Pacchioni, G. (2000) Role of Surface Defects in the Activation of Supported Metals: A Quantum-Chemical Study of Acetylene Cyclotrimerization on Pd1/MgO J. Phys. Chem. B 104, 10612–10620.

    Article  CAS  Google Scholar 

  47. Ferrari, A.M., Giordano, L., Abbet, S., Heiz, U., and Pacchioni, G. (2002) Selectivity of Surface Defects for the Activation of Supported Metal Atoms: Acetylene Cyclotrimerization on Pd1/MgO J. Phys. Chem. B 106, 3173–3179.

    Article  CAS  Google Scholar 

  48. Tysoe, W.T., Nyberg, G.L., and Lambert, R.M. (1983) Low Temperature Catalytic Chemistry of the Pd(111) Surface: Benzene and Ethylene from Acetylene J. Chem. Soc, Chem. Commun., 623–625.

    Google Scholar 

  49. Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.-D. (1999) Eur. J. Phys. D 9, 35–39.

    Article  CAS  Google Scholar 

  50. Abbet, S., Heiz, U., Häkkinen, H., and Landman, U. (2001) CO oxidation on a single Pd atom supported on magnesia Phys. Rev. Lett. 86, 5950–5953.

    Article  CAS  Google Scholar 

  51. Harbich, W. (2000) Metal Clusters at Surfaces, Meiwes-Broer, K.-H., Ed., Springer Series in Cluster Physics, Berlin.

    Google Scholar 

  52. Cleveland, C.L. and Landman, U. (1992) Dynamics of cluster-surface collisions Science 257, 355–358.

    Article  CAS  Google Scholar 

  53. Cheng, H.-P. and Landman, U. (1993) Controlled Deposition, Soft Landing, and Glass Formation in Nanostructure-Surface Collisions Science 260, 1304–1307.

    Article  CAS  Google Scholar 

  54. Cheng, H.-P. and Landman, U. (1994) Controlled Deposition and Classification of Copper Nanoclusters J. Phys. Chem. 98, 3527–3532.

    Article  CAS  Google Scholar 

  55. Messerli, S., Schintke, S., Morgenstern, K., Sanchez, A., Heiz, U., and Schneider, W.-D. (2000) Imaging size-selected silicon clusters with a low temperature scanning tunneling microscope Surf. Sci. 465, 331–338.

    Article  CAS  Google Scholar 

  56. Moseler, M., Häkkinen, H., and Landman, U. (2002) Supported magnetic nanoclusters: Soft landing of Pd clusters on a MgO surface Phys. Rev. Lett. 89, 176103–176109.

    Article  CAS  Google Scholar 

  57. Hammer, B. and Norskov, J.K. (1995) Why gold is the noblest of all the metals Nature 376, 238–240.

    Article  CAS  Google Scholar 

  58. Haruta, M. (1997) Size-and Support-Dependency in the Catalysis of Gold Catalysis Today 36, 153–166.

    Article  CAS  Google Scholar 

  59. Haruta, M. (2001) Appl. Catal. A 222, 427–432.

    Article  CAS  Google Scholar 

  60. Häkkinen, H., Abbet, S., Sanchez, A., Heiz, U., and Landman, U. (2002) Structural, electronic, and impurity-doping effects in nanocatalysis: Supported gold nanoclusters Ang. Chem. Int. Ed., in press.

    Google Scholar 

  61. Häkkinen, H. and Landman, U. (2000) Gold clusters (Aun, 2 ≤ n ≤ 10) and their anions Phys. Rev. B 62, R2287–R2289.

    Article  Google Scholar 

  62. Allers, K.-H., Pfnür, H., Feulner, P., and Menzel, D. (1994) J. Chem. Phys. 100, 3985–3989.

    Article  CAS  Google Scholar 

  63. Eichler, A. and Hafner, J. (1999) Reaction channels for catalytic oxidation of CO on Pt(111) Phys. Rev. B 59, 5960–5964.

    Article  CAS  Google Scholar 

  64. Scheffler, M. and Stampfl, C. (1999) Electronic Structure, Horn, K. and Scheffler, M., Eds., Elsevier, Amsterdam.

    Google Scholar 

  65. Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.-D. (2000) Tuning the oxidation of carbon monoxide by using nanoassembled model catalysts Chem. Phys. 262, 189–200.

    Article  CAS  Google Scholar 

  66. Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.-D. (1999) Catalytic Oxidation of CO on Monodispersed Platinum Clusters: Each Atom Counts J. Am. Chem. Soc. 121, 3214–3217.

    Article  CAS  Google Scholar 

  67. He, J.-W., Cesar, A.E., Corneille, J.S., Wu, M.-C., and Goodman, D.W. (1992) CO adsorption on ultrathin MgO films grown on a Mo(100) surface: An IRAS study Surf. Sci. 261, 167–170.

    Google Scholar 

  68. Ormerod, R.M. and Lambert, R.M. (1990) Heterogeneously catalysed Cyclotrimerisation of Ethyne to Benzene over Supported Palladium Catalysts J. Chem. Soc, Chem. Commun., 1421–1423.

    Google Scholar 

  69. Holmblad, P.M., Rainer, D.R., and Goodman, D.W. (1997) Particle Size Effects in the Acetylene Cyclotrimerization on Planar Model A1203 Thin Film Supported Pd Clusters J. Phys. Chem. B 101, 8883–8886.

    Article  CAS  Google Scholar 

  70. Patterson, C.H. and Lambert, R.M. (1988) Molecular Mechanisms in the Cyclotrimerization of Acetylene to Benzene on Palladium (111) J. Phys. Chem. 92, 1266–1270.

    Article  CAS  Google Scholar 

  71. Pacchioni, G. and Lambert, R.M. (1994) Cyclization of acetylene over Pd(111): a theoretical study of reaction mechanisms and surface intermediates Surf. Sci. 304, 208–222.

    Article  CAS  Google Scholar 

  72. Fahmi, A. and van Santen, R.A. (1996) Density Functional Study of Ethylene Adsorption on Palladium Clusters J. Phys. Chem. 100, 5676–5680.

    Article  CAS  Google Scholar 

  73. Burkart, S., Blessing, N., and Ganteför, G. (1999) Indication of a size-dependant transition from molecular to dissociative chemisorption on clusters Phys. Rev. B 60, 15639–15642.

    Article  CAS  Google Scholar 

  74. Lambert, R.M. and Ormerod, R.M. (1994) Surface Reactions, Madix, R.J., Ed., Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Judai, K., Wörz, A.S., Abbet, S., Heiz, U. (2003). Chemical reactivity of free and supported metal clusters. In: Russo, N., Salahub, D.R., Witko, M. (eds) Metal-Ligand Interactions. NATO Science Series, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0191-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0191-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1495-6

  • Online ISBN: 978-94-010-0191-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics