Skip to main content

Metal Clusters and Metallicity: The Paradigm of Magnesium

  • Conference paper
Metal-Ligand Interactions

Part of the book series: NATO Science Series ((NAII,volume 116))

Abstract

The size, or the number of atoms, the material, or the type of the atom(s), and the charge, or the oxidation state, are the central parameters that define the properties of atomic clusters, or, more generally, finite systems. The different isomeric forms of clusters, as well as their electronic, optical, magnetic, and other features are all defined by these three parameters. For a chosen material, however, it is ultimately the size that plays the decisive role. Afterall, the sensitivity of the different features to the charge is itself a finite-size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brechignac, C., Broyer, M., Cahuzac, Ph., Delacretaz, G., Labastie, P., and Wöste, L. (1985) Size dependence of inner-shell autoionization lines in mercury clusters, Chem. Phys. Lett. 120, 559–563.

    Article  CAS  Google Scholar 

  2. Rademann, K., Kaiser, B., Even, U., and Hensel, F. (1987) Size dependence of the gradual transition to metallic properties in isolated mercury clusters, Phys. Rev. Lett. 59, 2319–2321.

    Article  CAS  Google Scholar 

  3. Brechignac, C., Broyer, M., Cahuzac, Ph., Delacretaz, G., Labastie, P., Wolf, J.P., and Wöste, L. (1988) Probing the transition from van der Waals to metallic mercury clusters, Phys. Rev. Lett. 60, 275–278.

    Article  CAS  Google Scholar 

  4. Haberland, H., von Issendorf, B., Yufeng, J., and Kolar, T. (1992) Transition to plasmonlike absorption in small Hg clusters, Phys. Rev. Lett. 69, 3212–3215.

    Article  CAS  Google Scholar 

  5. Busani, R., Folkers, M., and Cheshnovsky, O. (1998) Direct observation of band-gap closure in mercury clusters, Phys. Rev. Lett. 81, 3836–3839.

    Article  CAS  Google Scholar 

  6. Cheshnovsky, O. et al., to be published.

    Google Scholar 

  7. Garcia, M.E., Pastor, G.M., and Bennemann, K.H. (1991) Theory for the change of the bond character in divalent-metal clusters, Phys. Rev. Lett. 67, 1142–1145.

    Article  CAS  Google Scholar 

  8. Diederich, T., Döppner, T., Braune, J., Tiggesbaunker, J., and Meiwes-Broer, K.-H. (2001) Electron derealization in magnesium clusters grown in supercold helium droplets, Phys. Rev. Lett. 86, 4807–4810.

    Article  CAS  Google Scholar 

  9. Thomas, O.C., Zheng, W., Xu, S., and Bowen, Jr., K.H. (2002) Onset of metallic behavior in magnesium clusters, Phys. Rev. Lett. 89, 213403.

    Article  Google Scholar 

  10. Lee, T.J., Rendell, A.P., and Taylor, P.R. (1990) Vibrations in small Mg clusters, J. Chem. Phys. 93, 6636–6641

    Article  CAS  Google Scholar 

  11. Bauschlicher, Jr., C.W. and Partridge, H. (1999) The atomization energy of Mg4, Chem. Phys. Lett. 300, 364–368

    Article  CAS  Google Scholar 

  12. Klopper, W. and Almlof, J. (1993) Towards the one-particle basis set limit of second-order correlation energies: MP2-R12 calculations on small Ben and Mgn clusters (n=l-4), J. Chem. Phys. 99, 5167–5177.

    Article  CAS  Google Scholar 

  13. Reuse, F., Khanna, S.N., de Coulon, V., and Buttet, J. (1990) Pseudopotential local-spin-density studies of neutral and charged Mgn (n ≤ 7) clusters, Phys. Rev. B 41, 11743–11759.

    Article  CAS  Google Scholar 

  14. Kumar, V. and Car, R. (1991) Structure, growth, and bonding nature of Mg clusters, Phys. Rev. B 44, 8243–8255.

    Article  CAS  Google Scholar 

  15. Delaly, P., Ballone, P., and Buttet, J. (1992) Metallic bonding in magnesium microclusters, Phys. Rev. B 45, 3838–3841.

    Article  CAS  Google Scholar 

  16. Rothlisberger, U., Andreoni, W., and Giannozzi, P. (1992) Thirteen-atom clusters: equilibrium geometries, structural transformations, and trends in Na, Mg, Al, and Si, J. Chem. Phys. 96, 1248–1256.

    Article  Google Scholar 

  17. Gong, X.G., Zheng, Q.Q., and He, Y.Z. (1993) Electronic structures of magnesium clusters, Phys. Lett. A 181, 459–464.

    Article  CAS  Google Scholar 

  18. Eriksson, L.A. (1995) Accurate density functional theory study of cationic magnesium clusters and Mg+-rare gas interactions, J. Chem. Phys. 103, 1050–1056.

    Article  CAS  Google Scholar 

  19. Davidson, E.R. and Frey, R.F. (1997) Density functional calculations for Mgn + clusters, J. Chem. Phys. 106, 2331–2341.

    Article  CAS  Google Scholar 

  20. Riemann, S.M., Koskinen, M., Hakkinen, H., Lindelof, P.E., and Manninen, M. (1997) Magic triangular and tetrahedral clusters, Phys. Rev. B 56, 12147–12150.

    Article  Google Scholar 

  21. Köhn, A., Weigend, F., and Airichs, R. (2001) Theoretical study on clusters of magnesium, Phys. Chem. Chem. Phys. 3, 711–719.

    Article  Google Scholar 

  22. Akola, J., Rytkonen, K., and Manninen, M. (2001) Metallic evolution of small magnesium clusters, Eur. Phys. J. D 16, 21–24.

    Article  CAS  Google Scholar 

  23. Acioli, P.H. and Jellinek, J. (2002) Electron binding energies of anionic magnesium clusters and the nonmetal-to-metal transition, Phys. Rev. Lett. 89, 213402.

    Article  Google Scholar 

  24. Jellinek, J. and Acioli, P.H. (2002) Magnesium clusters: structural and electronic properties and the size-induced nonmetal-to-metal transition, J. Phys. Chem. A 106, 10919–10925.

    Article  CAS  Google Scholar 

  25. Acioli, P.H. and Jellinek, J. (2003) Theoretical determination of electron binding energy spectra of anionic magnesium clusters, Eur. Phys. J. D, in press.

    Google Scholar 

  26. Jellinek, J. and Acioli, P.H. (2003) Converting Kohn-Sham eigenenergies into electron binding energies, J. Chem. Phys., in press.

    Google Scholar 

  27. Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098–3100.

    Article  CAS  Google Scholar 

  28. Perdew, J.P. (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33, 8822–8824.

    Article  Google Scholar 

  29. Wadt, W.R. and Hay, P.J. (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82, 284–298.

    Article  CAS  Google Scholar 

  30. Fuentealba, P., Szentpaly, L.V., Preuss, H., and Stoll, H. (1985) Pseudopotential calculations for alkaline-earth atoms, J. Phys. B 18, 1287–1296.

    Article  CAS  Google Scholar 

  31. Francl, M.M., Petro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., and Popple, J.A. (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, J. Chem. Phys. 77, 3654–3665.

    Article  CAS  Google Scholar 

  32. Lide D.R. (ed.) (1993) Handbook of Chemistry and Physics, CRC Press, Boca Raton.

    Google Scholar 

  33. Balfour, W.J. and Douglas A.E. (1970) Absorption spectrum of the Mg2 Molecule, Can. J. Phys. 48, 901–914.

    Article  CAS  Google Scholar 

  34. Sevier, K.D. (1979) Atomic electron binding energies, Atom. Data Nucl. Data Tables 24, 323–335; Shirley, D.A., Martin, R.L., Kawalczyc, S.P., McFeely, F.R., and Ley, L. (1977) Core-electron binding energies of the first thirty elements, Phys. Rev. B 15, 594-552.

    Article  CAS  Google Scholar 

  35. Kimura, K., Katsumata, S., Achiba, Y., Yamazaki, T., and Iwata, S. (1984) Handbook of Hel Photoelectron Spectra of Fundamental Organic Molecules, Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  36. Hotop, H. and Lineberger, W.C. (1985) Binding energies in atomic negative ions: II, J. Phys. Chem. Ref. Data 14, 731–750.

    Article  CAS  Google Scholar 

  37. Gupta, R.P. and Freeman, A.J. (1976) Band-structure contributions to X-ray emission and absorption spectra and edges in magnesium, Phys. Rev. Lett. 36, 1194–1197; Baraille, I., Pouchan, C., Causa, M., and Marinelli, F. (1998) Comparison between Hartree-Fock and Kohn-Sham electronic and structural properties for hexagonal-close-packed magnesium, J. Phys.: Condens. Matter 10, 10969-10977.

    Article  CAS  Google Scholar 

  38. Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.A., Chou, M.Y., and Cohen, M.L. (1984) Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett. 52, 2141–2143.

    Article  CAS  Google Scholar 

  39. Clemenger, K. (1985) Ellipsoidal shell structure in free-electron metal clusters, Phys. Rev. B 32, 1359–1362.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Jellinek, J., Acioli, P.H. (2003). Metal Clusters and Metallicity: The Paradigm of Magnesium. In: Russo, N., Salahub, D.R., Witko, M. (eds) Metal-Ligand Interactions. NATO Science Series, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0191-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0191-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1495-6

  • Online ISBN: 978-94-010-0191-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics