Advertisement

The Hydrogen Bonding in DNA vs. Unnatural Base Pairs

  • Eugene S. Kryachko
Conference paper
Part of the NATO Science Series book series (NAII, volume 116)

Abstract

The present work aims to shed a light on the old paradigm of the role of the hydrogen-bonding patterns in the guanine-cytosine and adenine-thymine DNA base pairs and in the functioning of the DNA and to thoroughly discuss the concept of unnatural base pairs.

Keywords

Base Pair Proton Transfer Computational Level Total Dipole Moment Shape Complementarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Watson, J. D. and Crick, F. H. C. (1953) Nature 171, 737 (reprinted in (1995) Ann. N. Y. Acad. Sci. 758, 737).CrossRefGoogle Scholar
  2. [2]
    Watson, J. D. and Crick, F. H. C. (1953) Nature 171, 964.CrossRefGoogle Scholar
  3. [3]
    Crick, F. H. C. and Watson, J. D. (1954) Proc. Roy. Soc. London A 223, 80.CrossRefGoogle Scholar
  4. [4]
    Watson, J. D. (1968) The Double Helix, Atheneum, New York.Google Scholar
  5. [5]
    Crick, F. H. C. (1988) What Mad Pursuit: A Personal View of Scientific Discovery, Basic Books, New York.Google Scholar
  6. [6]
    Watson, J. D. and Crick, F. H. C. (1993) J. Am. Med. Ass. 269, 1966, 1967.Google Scholar
  7. [7]
    Watson, J. D. (2001) Genes, Girls and Gamow, Oxford University Press, Cambridge.Google Scholar
  8. [8]
    Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer, Berlin.CrossRefGoogle Scholar
  9. [9]
    Sinden, R. R. (1994) DNA Structure and Function, Academic, San Diego.Google Scholar
  10. [10]
    Blackburn, G. M. and Gait, M. J. (eds.) (1996) Nucleic Acids in Chemistry and Biology, Oxford University Press, Oxford.Google Scholar
  11. [11]
    Romberg, A. and Baker, T. A. (1992) DNA Replication, Freeman, New York.Google Scholar
  12. [12]
    Leontis, N. and Westhof, E. (1998) Quart. Rev. Biophysics 31, 399.CrossRefGoogle Scholar
  13. [13]
    Wang, L. and Schultz, P. G. (2002) Chem. Commun. 1.Google Scholar
  14. [14]
    Schuster, P. and Wolschann, P. (1999) Monatsh. Chem. 130, 947 and references therein.Google Scholar
  15. [16]
    Green, R. D. (1974) Hydrogen Bonding by C-H Groups, MacMillan, London.Google Scholar
  16. [17]
    Desiraju, G. R. and Steiner, T (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, New York.Google Scholar
  17. [19]
    Hobza, P. and Havlas, Z. (2000) Chem. Rev. 100, 4253.CrossRefGoogle Scholar
  18. [20]
    Gu, Y., Kar, T. and Schemer, S. (1999) J. Am. Chem. Soc. 121, 9411.CrossRefGoogle Scholar
  19. [21]
    Kryachko, E. S. and Zeegers-Huyskens, Th. (2001) J. Phys. Chem. A 105, 7118.CrossRefGoogle Scholar
  20. [22]
    Kryachko, E. S. and Zeegers-Huyskens, Th. (2002) J. Phys. Chem. A 106, 6832.CrossRefGoogle Scholar
  21. [23]
    Kryachko, E. S. and Sabin, J. R. (2002) Int. J. Quantum Chem. (in press).Google Scholar
  22. [24]
    Actually, the hydrogen bonding and stacking interactions are coupled. See, e. g., Levitt, M. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 640. However, the hydrogen bonding is primarily stabilized by electrostatic and charge-transfer interactions whereas stacking is mainly by London dispersion forces. For so called secondary interactions see Refs. [25-29].CrossRefGoogle Scholar
  23. [25]
    Jorgenson, W. L. and Pranata, J. (1990) J. Am. Chem. Soc. 112, 2008.CrossRefGoogle Scholar
  24. [26]
    Pranata, J., Wierschke, S. G. and Jorgenson, W. L. (1991) J. Am. Chem. Soc. 112, 2810.CrossRefGoogle Scholar
  25. [27]
    Murray, T. J. and Zimmerman, S. C. (1992) J. Am. Chem. Soc. 114, 4010.CrossRefGoogle Scholar
  26. [28]
    Prins, L. J., Reinhoudt, D. N. and Timmerman, P. (2001) Angew. Chem. Int. Ed. 40, 2382.CrossRefGoogle Scholar
  27. [29]
    Popelier, P. L. A. and Joubert, L. (2002) J. Am. Chem. Soc. 124, 8725.CrossRefGoogle Scholar
  28. [30]
    Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond, Freeman, San Francisco.Google Scholar
  29. [31]
    Schuster, P., Zundel, G. and Sandorfy, C. (eds.) (1976) The Hydrogen Bond. Recent Developments in Theory and Experiments, North-Holland, Amsterdam.Google Scholar
  30. [32]
    Scheiner, S. (1997) Hydrogen Bonding — A Theoretical Perspective, Oxford University Press, New York.Google Scholar
  31. [33]
    Del Bene, J. E. (1998) in Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer III, H. F. and Schreiner, P. R. (eds.), The Encyclopedia of Computational Chemistry, Wiley, Chichester, Vol. 2, p. 1263.Google Scholar
  32. [34]
    Del Bene, J. E. and Jordan, M. J. T. (1999) Int. Rev. Phys. Chem. 18, 119.CrossRefGoogle Scholar
  33. [35]
    Yanson, I., Teplitsky, A. and Sukhodub, L. (1979) Biopolymers 18, 1149.CrossRefGoogle Scholar
  34. [36]
    Kyoguku, Y., Lord, R. C. and Rich, A. (1967) J. Am. Chem. Soc. 89, 496.CrossRefGoogle Scholar
  35. [37]
    Kyoguku, Y., Lord, R. C. and Rich, A. (1969) Biophys. Biochem. Acta 179, 10.CrossRefGoogle Scholar
  36. [38]
    Newmark, R. A. and Cantor, C. R. (1968) J. Am. Chem. Soc. 90, 5010.CrossRefGoogle Scholar
  37. [39]
    Gould, I. R. and Kollman, P. A. (1994) J. Am. Chem. Soc. 116, 2493.CrossRefGoogle Scholar
  38. [40]
    Brameld, K., Dasgupta, S. and Goddard, W. A., III (1997) J. Phys. Chem. ? 101, 4851.CrossRefGoogle Scholar
  39. [41]
    Hobza, P. and Šponer, J. (1999) Chem. Rev. 99, 3247.CrossRefGoogle Scholar
  40. [42]
    Leszczynski, J. (2000) Adv. Mol. Struct. Res. 6, 209.Google Scholar
  41. [43]
    Löwdin, P.-O. (1963) Rev. Mod. Phys. 35, 724.CrossRefGoogle Scholar
  42. [44]
    Löwdin, P.-O. (1965) Adv. Quantum. Chem. 2, 213.CrossRefGoogle Scholar
  43. [45]
    Löwdin, P.-O. (1964) in Pullman, B. (ed.), Electronic Aspects of Biochemistry, Academic, New York, p. 167.Google Scholar
  44. [46]
    Löwdin, P.-O. (1964) Biopolymers Symp. 1, 161, 293.Google Scholar
  45. [47]
    Löwdin, P.-O. (1964) Biopolymers Symp. 1, 293.Google Scholar
  46. [48]
    Löwdin, P.-O. (1965) Mutation Res. 2, 218.CrossRefGoogle Scholar
  47. [49]
    Löwdin, P.-O. (1986) Int. J. Quantum Chem.: Quantum Biol. Symp. 13, 311.Google Scholar
  48. [50]
    Kong, Y. S., Jhon, M. S. and Löwdin, P.-O. (1987) Int. J. Quantum Chem.: Quantum Biol. Symp. 14, 189.CrossRefGoogle Scholar
  49. [51]
    Ladik, J. (1964) J. Theor. Biol. 6, 201.CrossRefGoogle Scholar
  50. [52]
    Rein, R. and Ladik, J. (1964) J. Chem. Phys. 40, 2466.CrossRefGoogle Scholar
  51. [53]
    Rein, R. and Harris, F. E. (1964) J. Chem. Phys. 41, 3393.CrossRefGoogle Scholar
  52. [54]
    Rein, R. and Harris, F. E. (1965) J. Chem. Phys. 42, 2177.CrossRefGoogle Scholar
  53. [55]
    Rein, R. and Harris, F. E. (1965) J. Chem. Phys. 43, 4415.CrossRefGoogle Scholar
  54. [56]
    Lunell, S. and Sperber, G. (1967) J. Chem. Phys. 46, 2119.CrossRefGoogle Scholar
  55. [57]
    Clementi, E., Mehl, J. and v. Niessen, W. (1971) J. Chem. Phys. 54, 508.CrossRefGoogle Scholar
  56. [58]
    Clementi, E., Corongiu, G., Detrich, J., Chin, S. and Domingo, L. (1984) Int. J. Quantum Chem.: Quantum Chem. Symp. 18, 601.CrossRefGoogle Scholar
  57. [59]
    Scheiner, S. and Kern, C. W. (1978) Chem. Phys. Lett. 57, 331.CrossRefGoogle Scholar
  58. [60]
    Scheiner, S. and Kern, C. W. (1979) J. Am. Chem. Soc. 101, 4081.CrossRefGoogle Scholar
  59. [61]
    Kwiatkowski, J. S., Zielinski, T. J. and Rein, R. (1986) Adv. Quantum Chem. 18, 85.CrossRefGoogle Scholar
  60. [62]
    Kwiatkowski, J. S. and Person, W. B. (1990) in Beveridge, D. and Lavery, R. (eds.), Theoretical Biochemistry and Molecular Biophysics. Vol. 1: DNA, Adenine Press, New York, p. 153.Google Scholar
  61. [63]
    Echols, H. and Goodman, M. F. (1991) Annu. Rev. Biochem. 60, 477.CrossRefGoogle Scholar
  62. [64]
    Kwiatkowski, J. S. and Pullman, B. (1975) Adv. Heterocycl. Chem. 18, 199.CrossRefGoogle Scholar
  63. [65]
    Person, W. B., Szczepaniak, K., Szczepaniak, M., Kwiatkowski, J. S. and Czerminski, R. J. (1989) J. Mol Struct. 194, 239.CrossRefGoogle Scholar
  64. [66]
    Sponer, J., Leszczynski, J. and Hobza, P. (1996) J. Biomol. Struct. Dyn. 14, 117.CrossRefGoogle Scholar
  65. [67]
    Strazéwski, P. and Tamm, C. (1990) Angew. Chem. Int. Ed. Engl. 29, 36.CrossRefGoogle Scholar
  66. [68]
    Steenken, S. (1997) Chem. Biol. 378, 1293.Google Scholar
  67. [69]
    Kwiatkowski, J. S. and Leszczynski, J. (1997) Int. J. Quantum Chem. 61, 453.CrossRefGoogle Scholar
  68. [70]
    Poltev, V. I. Teplukhin, A. V. and Kwiatkowski, J. S. (1992) J. Biomol. Struct. Dyn. 9, 747.CrossRefGoogle Scholar
  69. [71]
    Morpurgo, S., Bossa, M. and Morpurgo, G. O. (2000) Adv. Quantum Chem. 36, 169.CrossRefGoogle Scholar
  70. [72]
    Kryachko, E. S. and Nguyen, M. T. (2001) Adv. Quantum Chem. 40, 79.CrossRefGoogle Scholar
  71. [73]
    Kryachko, E. S., Nguyen, M. T. and Zeegers-Huyskens, Th. (2001) J. Phys. Chem. A 105, 3379.CrossRefGoogle Scholar
  72. [74]
    Kryachko, E. S., Nguyen, M. T. and Zeegers-Huyskens, Th. (2001) J. Phys. Chem. A 105, 1288.CrossRefGoogle Scholar
  73. [75]
    Kryachko, E. S., Nguyen, M. T. and Zeegers-Huyskens, Th. (2001) J. Phys. Chem. A 105, 1934.CrossRefGoogle Scholar
  74. [76]
    Kryachko, E. S., Nguyen, M. T. and Zeegers-Huyskens, Th. (2001) Chem. Phys. 264, 21.CrossRefGoogle Scholar
  75. [77]
    Kawahara, S.-I., Uchimaru, T. and Sekine, M. (2000) J. Mol. Struct. (Theochem) 530, 109.CrossRefGoogle Scholar
  76. [78]
    Hrouda, J. V., Florian, J. and Hobza, P. (1993) J. Phys. Chem. 97, 1542.CrossRefGoogle Scholar
  77. [79]
    Florian, J., Hrouda, J. V. and Hobza, P. (1994) J. Am. Chem. Soc. 116, 1457.CrossRefGoogle Scholar
  78. [80]
    Florian, J. and Leszczynski, J. (1996) J. Am. Chem. Soc. 118, 3010.CrossRefGoogle Scholar
  79. [81]
    Barsky, D. and Colvin, M. E. (2000) J. Phys. Chem. A 104, 8570.CrossRefGoogle Scholar
  80. [82]
    Kryachko, E. S. (2002) Int. J. Quantum Chem. 90, 910.CrossRefGoogle Scholar
  81. [83]
    Danilov, V. I. and G. F. Kventsel, G. F. (1971) Electronic Representation in the Point Mutation Theory, Naukova Dumka, Kiev.Google Scholar
  82. [84]
    Ladik, J. (1972) Quantenbiochemie für Chemiker und Biologen, Akadémiai Kiadó, Budapest.Google Scholar
  83. [85]
    Rein, R., Shibata, M., Garduno-Juarez, R. and Kieber-Emmons, T. (1983) in Clementi, E. and Sarma, R. H. (eds.), Structure and Dynamics: Nucleic Acids and Proteins, Adenine Press, New York, p. 269.Google Scholar
  84. [86]
    Marino, T., Russo, N. and Toscano, M. (1997) Int. J. Quantum Chem 62, 489.CrossRefGoogle Scholar
  85. [87]
    Marino, T., Russo, N., Sicilia, E. and Toscano, M. (2001) Int. J. Quantum Chem. 82, 44.CrossRefGoogle Scholar
  86. [88]
    Bertran, J., Noguera, M. and Sodupe, M. (2002) in Brändas, E. J. and Kryachko, E. S. (eds.), Fundamental World of Quantum Chemistry. A Tribute Volume to the Memory of Per-Olov Löwdin, Kluwer, Dordrecht, Vol. II, Ch. 21.Google Scholar
  87. [89]
    Kryachko, E. S. (2002) in Brändas, E. J. and Kryachko, E. S. (eds.), Fundamental World of Quantum Chemistry. A Tribute Volume to the Memory of Per-Olov Löwdin, Kluwer, Dordrecht, Vol. II, Ch. 22.Google Scholar
  88. [90]
    Patikoglou, G. A., Kim, J. L., Sun, L., Yang, S.-H., Kodadek, T. and Burley, S. K. (1999) Genes Dev. 13, 3217.CrossRefGoogle Scholar
  89. [91]
    Juo, Z. S., Chiu, T. K., Leiberman, P. M., Baikalov, I., Berk, A. J. and Dickerson, R. E. (1996) J. Mol. Biol. 261, 239.CrossRefGoogle Scholar
  90. [92]
    Moreau, J., Maschat, M. F., Kejlarova-Lepesant, J., Lepesant, J.-A. and Scherrer, K. (1982) Nature 295, 239.CrossRefGoogle Scholar
  91. [93]
    Oosumi, T., Garlick, B. and Belknap, W. R. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 8886.CrossRefGoogle Scholar
  92. [94]
    Abrescia, N. G. A., Thompson, A., Huynh-Dinh, T. and Subirana, J. A. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 2806.CrossRefGoogle Scholar
  93. [95]
    Hall, B. G. (1990) Genetics 126, 5.Google Scholar
  94. [96]
    Hall, B. G. (1994) FEMS Microbiol. Lett. 117, 237.CrossRefGoogle Scholar
  95. [97]
    Gu. J. and Leszczynski, J. (1999) J. Phys. Chem. A 103, 2744.CrossRefGoogle Scholar
  96. [98]
    Dickerson, R. E. (1992) Methods Enzymol. 211, 67.CrossRefGoogle Scholar
  97. [99]
    Voet, A. and Rich, A. (1970) Progr. Nucl. Acid Res. Mol. Biol. 10, 183.CrossRefGoogle Scholar
  98. [100]
    Rosenberg, J. M., Seeman, N. C., Day, R. O. and Rich, A. (1976) J. Mol. Biol. 104, 145.CrossRefGoogle Scholar
  99. [101]
    Spencer, M. (1959) Acta Cryst. 12, 66.CrossRefGoogle Scholar
  100. [102]
    Arnott, S. (1970) Progr. Biophys. Mol. Biol. 21, 267.CrossRefGoogle Scholar
  101. [103]
    Seeman, N. C., Rosenberg, J., Suddath, F. L., Kim, J. J. P. and Rich, A. (1976) J. Mol Biol. 104, 145.CrossRefGoogle Scholar
  102. [104]
    Kennard, O. (1987) in Eckstein, F. and Lilley, D. M. J. (eds.), Nucleic Acids and Molecular Biology, Springer, Berlin, p. 25.CrossRefGoogle Scholar
  103. [105]
    Devadas, B. and Leonard, N. J. (1986) J. Am. Chem. Soc. 108, 5012.CrossRefGoogle Scholar
  104. [106]
    Devadas, B. and Leonard, N. J. (1990) J. Am. Chem. Soc. 112, 3125.CrossRefGoogle Scholar
  105. [107]
    Bhat, B., Leonard, N. J., Robinson, H. and Wang, A. H.-J. (1996) J. Am. Chem. Soc. 118, 10744.CrossRefGoogle Scholar
  106. [108]
    Webb, T. R. and Matteucci, M. D. (1986) J. Am. Chem. Soc. 108, 2764.CrossRefGoogle Scholar
  107. [109]
    Weber, A. L. (1989) Origins Life Evol. Biosphere 19, 179.CrossRefGoogle Scholar
  108. [110]
    Ferentz, A. E. and Verdine, G. L. (1991) J. Am. Chem. Soc. 113, 4000.CrossRefGoogle Scholar
  109. [111]
    Cowart, M. and Benkovic, S. J. (1991) Biochemistry 30, 788.CrossRefGoogle Scholar
  110. [112]
    Mitchell, M. A., Kelly, R. C., Wicnienski, N. A., Hatzenbuhler, N. T., Williams, M. G., Petzold, G. L., Slightom, J. L. and Siemieniak, D. R. (1991) J. Am. Chem. Soc. 113, 8994.CrossRefGoogle Scholar
  111. [113]
    Dieter-Wurm, I., Sabat, M. and Lippert, B. (1992) J. Am. Chem. Soc. 114, 357.CrossRefGoogle Scholar
  112. [114]
    Armstrong, R. W., Salvati, M. E. and Nguyen, M. (1992) J. Am. Chem. Soc. 114, 3144.CrossRefGoogle Scholar
  113. [115]
    Ohtsuki, T., Kimoto, M., Ishikawa, M., Mitsui, T., Hirao, I. and Yokoyama, S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 4922.CrossRefGoogle Scholar
  114. [116]
    Kirchner, J. J., Sigurdsson, S. T. and Hopkins, P. B. (1992) J. Am. Chem. Soc. 114, 4021.CrossRefGoogle Scholar
  115. [117]
    Huang, H., Solomon, M. S. and Hopkins, P. B. (1992) J. Am. Chem. Soc. 114, 9240.CrossRefGoogle Scholar
  116. [118]
    Seaman, F. C. and Hurley, L. (1993) Biochemistry 32, 12577.CrossRefGoogle Scholar
  117. [119]
    Osborne, S. E., Cain, R. J. and Glick, G. D. (1997) J. Am. Chem. Soc. 119, 1172.CrossRefGoogle Scholar
  118. [120]
    Gao, K. and Orgel, L. E. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 14837.CrossRefGoogle Scholar
  119. [121]
    Qiao, X. and Kishi, Y. (1999) Angew. Chem. Int. Ed. 38, 928.CrossRefGoogle Scholar
  120. [122]
    Qiu, Y.-L., Li, H.-Y., Topalov, G. and Kishi, Y., (2000) Tetrahedron Lett. 41,9425.CrossRefGoogle Scholar
  121. [123]
    Li, H.-Y., Qiu, Y.-L., Moyroud, E. and Kishi, Y. (2001) Angew. Chem. Int. Ed. 40, 1471.CrossRefGoogle Scholar
  122. [124]
    Moran, S., Ren, R. X.-F., Rumney, S. and Kool, E. T. (1997) J. Am. Chem. Soc. 119, 2056.CrossRefGoogle Scholar
  123. [125]
    Morales, J. C. and Kool, E. T. (1998) Nature Struct. Biol. 5, 950.CrossRefGoogle Scholar
  124. [126]
    Guckian, K. M., Krugh, T. K. and Kool, E. T. (1998) Nature Struct. Biol. 5, 954.CrossRefGoogle Scholar
  125. [127]
    Barsky, D., Kool, E. T. and Colvin, M. E. (1999) J. Biomol. Struct. Dyn. 16, 1119.CrossRefGoogle Scholar
  126. [128]
    Kool, E. T., Morales, J. C. and Guckian, K. M. (2000) Angew. Chem. Int. Ed. 39, 990.CrossRefGoogle Scholar
  127. [129]
    Guckian, K. M., Krugh, T. R. and Kool, E. T. (2000) J. Am. Chem. Soc. 122, 6841.CrossRefGoogle Scholar
  128. [130]
    Kool, E. T. (2001) Annu. Rev. Biophys. Biomol. Struct. 30, 1 and references therein.CrossRefGoogle Scholar
  129. [131]
    Guckian, K. M., Schweitzer, B. A., Ren, R. X. F., Sheils, C. J., Paris, P. L., Tahmassebi, D. C. and Kool, E. T. (1996) J. Am. Chem. Soc. 118, 8182.CrossRefGoogle Scholar
  130. [132]
    Schweitzer, B. A. and Kool, E. T. (1994) J. Org. Chem. 59, 7238.CrossRefGoogle Scholar
  131. [133]
    Schweitzer, B. A. and Kool, E. T. (1995) J. Am. Chem. Soc. 117, 1863.CrossRefGoogle Scholar
  132. [134]
    Matray, T. J. and Kool, E. T. (1999) Nature 399, 704.CrossRefGoogle Scholar
  133. [135]
    McMinn, D. L., Ogawa, A. K., Wu, Y., Liu, J., Schultz, P. G. and Romesberg, F. E. (1999) J. Am. Chem. Soc. 121, 11585.CrossRefGoogle Scholar
  134. [136]
    Ogawa, A. K., Wu, Y., McMinn, D. L., Liu, J., Shultz, P. G. and Romesberg, F. E. (2000) J. Am. Chem. Soc. 122, 3274.CrossRefGoogle Scholar
  135. [137]
    Tae, E. L., Wu, Y., Xia, G., Schultz, P. G. and Romesberg, F. E. (2001) J. Am. Chem. Soc. 123, 7439.CrossRefGoogle Scholar
  136. [138]
    O’Neill, B. M., Ratto, J. E., Good, K. L., Tahmassebi, D. C., Helquist, S. A., Morales, J. C. and Kool, E. T. (2002) J. Org. Chem. 67, 5869.CrossRefGoogle Scholar
  137. [139]
    Yu, C., Henry, A. A., Romesberg, F. E. and Schultz, P. G. (2002) Angew. Chem. Int. Ed. 41, 3841.CrossRefGoogle Scholar
  138. [140]
    Goodman, M. F. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 10493).CrossRefGoogle Scholar
  139. [141]
    Diederichsen, U. (1998) Angew. Chem. Int. Ed. 37, 1655.CrossRefGoogle Scholar
  140. [142]
    Meyer, M. and Sühnel, J. (1997) J. Biomol. Struct. Dyn. 15, 619.CrossRefGoogle Scholar
  141. [143]
    Wang, X. and Houk, K. N. (1998) Chem. Commun. 2631.Google Scholar
  142. [144]
    Cubero, E., Sherer, E. C., Luque, F. J. L., Orozco, M. and Laughton, C. A. (1999) J. Am. Chem. Soc. 121, 8653.CrossRefGoogle Scholar
  143. [145]
    Sherer, E. C., Bono, S. J. and Shields, G. C. (2001) J. Phys. Chem. B 105, 8445. See also C&EN, March 3, 9 (1997); Ibid. November 9, 69 (1998).CrossRefGoogle Scholar
  144. [146]
    See also: Service, R. F. (2000) Science 289, 232 and C&EN, August 6, 32 (2001).CrossRefGoogle Scholar
  145. [147]
    Moran, S., Ren, R. X., Sheils, C. J., Rumney, S. and Kool, E. T. (1996) Nucleic Acid Res. 24, 2044.CrossRefGoogle Scholar
  146. [148]
    Kool, E. T. (1998) Biopolymers 48, 3 (1998).CrossRefGoogle Scholar
  147. [149]
    Kinkel, T. A. and Bebenek, K. (2000) Annu. Rev. Biochem. 69, 497.CrossRefGoogle Scholar
  148. [150]
    Evans, T. A. and Seddon, K. R. (1997) Chem. Commun. 2023.Google Scholar
  149. [151]
    Ryjáček, F., Kratochvil, M. and Hobza, P. (1999) Chem. Phys. Lett. 313, 393.CrossRefGoogle Scholar
  150. [152]
    Monat, J. F., Toczylowski, R. R. and Cybulski, S. M. (2001) J. Phys. Chem. A 105, 9004.CrossRefGoogle Scholar
  151. [153]
    Schmidt, K. S., Sigel, R. K., Filippov, D. V., van der Marel, G. A., Lippert, B. and Reedijk, J. (2000) New J. Chem. 24, 195.CrossRefGoogle Scholar
  152. [154]
    Santhosh, C. and Mishra, P. C. (1998) Int. J. Quantum Chem. 68, 351.CrossRefGoogle Scholar
  153. [155]
    Fonseca Guerra, C. and Bickelhaupt, F. M. (2002) Angew. Chem. Int. Ed. 41, 2092.Google Scholar
  154. [156]
    Hobza, P. (2002) Int. J. Quantum Chem. 90, 1071.CrossRefGoogle Scholar
  155. [157]
    Mathis, G. and Hunziker, J. (2002) Angew. Chem. Int. Ed. 41, 3203.CrossRefGoogle Scholar
  156. [158]
    Kryachko, E. S. and Nguyen, M. T. (2002) J. Phys. Chem. A 106, 9319.CrossRefGoogle Scholar
  157. [159]
    Mendelman, L. V., Boosalis, M. S., Petruska, J. and Goodman, M. F. (1989) J. Biol. Chem. 264, 14415.Google Scholar
  158. [160]
    Cole, J. and Skopek, T. R. (1996) Mutation Res. 304, 364.Google Scholar
  159. [161]
    Parsons, B. L. and Heflich, R. H. (1997) Mutation Res. 387, 97.CrossRefGoogle Scholar
  160. [162]
    Lomant, A. J. and Fresco, J. R. (1975) in A. J. Lomant and J. R. Fresco (eds.), Progress in Nucleic Acid Research Molecular Biology, Academic, New York, Vol. 15, p. 185.Google Scholar
  161. [163]
    Lindhai, T. (1982) Annu. Rev. Biochem. 51, 61.CrossRefGoogle Scholar
  162. [164]
    Sloane, D. L., Goodman, M. F. and Echols, H. (1988) Nucleic Acid Res. 16, 6465.CrossRefGoogle Scholar
  163. [165]
    Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M. (1987) Molecular Biology of the Gene, Benjamin/Cummings, Menlo Park.Google Scholar
  164. [166]
    Catalan, J. and Kasha, M. (2000) J. Phys. Chem. A 104, 10812.CrossRefGoogle Scholar
  165. [167]
    Fiebig, T., Chachisvilis, M., Manger, M., Zewail, A. H., Douhal, A., Garcia-Ochoa, I. and de La Hoz Ayuso, A. (1999) J. Phys. Chem. A 103, 7419 and references therein.CrossRefGoogle Scholar
  166. [168]
    Raszka, M. and Kaplan, N. O. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 2025.CrossRefGoogle Scholar
  167. [169]
    Mildvan, A. S. (1974) Annu. Rev. Biochem. 43, 357.CrossRefGoogle Scholar
  168. [170]
    Loeb, L. A. and Kunkel, T. A. (1982) Annu. Rev. Biochem. 51, 429.CrossRefGoogle Scholar
  169. [171]
    Goodman, M. F. and Fygenson, K. D. (1998) Genetics 148, 1475.Google Scholar
  170. [172]
    Bruskov, V. I. and Poltev, V. I. (1979) J. Theor. Biol. 78, 29.CrossRefGoogle Scholar
  171. [173]
    Engel, J. D. and v. Hippel, P. H. (1978) J. Biol. Chem. 253, 935.Google Scholar
  172. [174]
    Polanyi, M. (1968) Science 160, 1308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Eugene S. Kryachko
    • 1
    • 2
  1. 1.Bogoliubov Institute for Theoretical PhysicsKievUkraine
  2. 2.Department of ChemistryUniversity of LeuvenLeuvenBelgium

Personalised recommendations