Electronic Properties, Spectroscopic Properties and Monomolecular Isomerization Processes of Prototype OLED Compound Aluminum Tris(Quinolin-8-Olate) Facial and Meridianal Isomers

  • Mario Amati
  • Francesco Lelj
Part of the NATO Science Series book series (NAII, volume 116)


Aluminum tris(quinolin-8-olate) (Alq3 in the following) represents a prototype compound for studies in the field of organic LEDs (OLEDs) and it is the chosen substance in many OLEDs which have hit the market. Alq3 meridianal and facial isomers ground state and spectroscopic properties have been studied by DFT and TD-DFT computations. The differences between the two isomers have been compared with the differences between δ-phase crystals and meridianal Alq3 crystals. In this way, the possibility that the facial isomer is contained in the Alq3 δ-phase has been discussed. This work has allowed the assignment of the experimental absorption bands of meridianal Alq3 up to about 255nm and the theoretical prediction of facial Alq3 absorption spectrum. The comparison between the absorption and emission characteristics of the two isomers has suggested the spectroscopic properties to be used to distinguish the facial isomer from the meridianal isomer. Indications have been obtained about the excited state kinetics of the more studied meridianal Alq3. The evaluation of the reaction surface of the isolated Alq3 allowed the determination of its monomolecolar isomerization paths and their energetics. Thus, it has been possible to associate the known high rate of the Alq3 isomerizations to the dissociative processes which involve the Al-N bond. Furthermore, new suggestions about the Alq3 chemistry have been introduced. This represents a first glance at the understanding of undesirable processes as atmospheric-induced decomposition and other degradation paths which limit the Alq3 technological applications.


High Occupied Molecular Orbital Oscillator Strength Time Dependent Density Functional Theory Vibronic Structure Chirality Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Condren, S. M., Lisensky, G. C., Ellis, A. B., Nordell, K. J., Kuech T.F. and Stockman, S. A. (2001) J. Chem. Educ. 78, 1033CrossRefGoogle Scholar
  2. 2).
    Sheats, J. R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D. and Stocking, A. (1996) Science 273,884CrossRefGoogle Scholar
  3. 3).
    Curioni, A., Boero, M. and Andreoni, W. (1998) Chem. Phys. Lett. 294, 263CrossRefGoogle Scholar
  4. 4).
    Schmidbaur, H., Lettenbauer, J., Wilkinson, D. L., Müller, G. and Kumberger, O. Z. (1991) Naturforsch. B 46, 901Google Scholar
  5. 5).
    Fujii, L., Hirayama, N., Ohtani, J. and Kodama, K. (1996) Anal. Sci. 12, 153CrossRefGoogle Scholar
  6. 6).
    Baker, B. C. and Sawyer, D. T. (1968) Anal Chem. 40, 1945Google Scholar
  7. 7).
    Brinkmann, M., Gadret, G., Muccini, M., Taliani, C., Masciocchi, N. and Sironi, A. (2000) J. Amer. Chem. Soc. 122, 5147CrossRefGoogle Scholar
  8. 8).
    Braun, M., Gmeiner, J., Tzolov, M., Coelle M., Meyer F. D., Milius W., Hillebrecht H., Wendland, O., von Schütz, J. U. and Brutting, W. (2001) J. Chem. Phys 114, 9625CrossRefGoogle Scholar
  9. 9).
    Higginson, K. A.,. Zhang, X.-M and Papadimitrakopoulo, F., (1998) Chem. Mater. 10, 1017CrossRefGoogle Scholar
  10. 10).
    Sano, K., Kawata, Y., Urano, T. I. and Mori, Y., (1992) Mater. Chem. 2, 767CrossRefGoogle Scholar
  11. 11).
    Jordan, R. B. (1991) Reaction Mechanisms of Inorganic and Organometallic Systems, Oxford University Press NY, cap. 4 and reference therein.Google Scholar
  12. 12).
    Kepert, D. L., (1977) Prog. Inorg. Chem. 23, 1CrossRefGoogle Scholar
  13. 13).
    Gordon, J. G. and Holm, R. H., (1970) J. Amer. Chem. Soc. 92, 5319CrossRefGoogle Scholar
  14. 14).
    Bailar, J. C., Jr., (1958) J. Inorg. Nucl. Chem 8, 165CrossRefGoogle Scholar
  15. 15).
    Ray, P. and Dutt, N. K., (1943) J. Indian Chem. Soc. 20, 81Google Scholar
  16. 16).
    Gordon, J. C., O’Connor, M. J. and Holm, R. H., (1971) Inorg. Chem. Acta, 5, 381CrossRefGoogle Scholar
  17. 17).
    Eaton, S. S., Hutchinson, J. R., Holm, R. H. and Muetterties, E. L., (1972) J. Amer. Chem. Soc, 94, 6411CrossRefGoogle Scholar
  18. 18).
    Vanquickenborne, L. G. and Pierloot, K. (1981) Inorg. Chem. 20, 3673CrossRefGoogle Scholar
  19. 19).
    Rodger, A. and Johnson, B.F.G., (1988) Inorg. Chem., 27, 3062CrossRefGoogle Scholar
  20. 20).
    Parr, R. G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, Clarendon Press, OxfordGoogle Scholar
  21. 21).
    Rodger, A. and Schipper, P. E. (1986) Chem. Phys. 107, 329CrossRefGoogle Scholar
  22. 22).
    Rodger, A. and Schipper, P. E. (1987) J. Phys. Chem. 91, 189CrossRefGoogle Scholar
  23. 23).
    Rodger, A. and Schipper, P. E. (1988) Inorg. Chem. 27, 458CrossRefGoogle Scholar
  24. 24).
    Becke, A.D. (1993) J Chem. Phys. 98, 5648CrossRefGoogle Scholar
  25. 25).
    Casida, M. (1995) Recent advances in Density Functional Methods, Time dependent density functional response theory for molecules, D. P. Chong, Ed., World Scientific: Singapore, Vol. 1, pp. 155Google Scholar
  26. 26).
    Casida, M. E., Jamorski, C., Casida, K. C. and Salahub, D. R. (1998) J. Chem. Phys. 108, 4439CrossRefGoogle Scholar
  27. 27).
    Becke, A. D. (1988) Phys. Rev. A 38, 3098CrossRefGoogle Scholar
  28. 28).
    Lee, C., Yang, W. and Parr, R. G.(1988) Phys. Rev. ? 37, 785Google Scholar
  29. 29).
    Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. and Fiolhais, C. (1992) Phys. Rev. ? 46, 6671Google Scholar
  30. 30).
    Vosko, S. H., Wilk, L. and Nusair, M. (1980) Can. J. Phys. 58, 1200CrossRefGoogle Scholar
  31. 31).
    Van Leeuwen, R. and Baerends, E. J. (1994) Phys. Rev. A 49, 2421CrossRefGoogle Scholar
  32. 32).
    Gaussian 98 (Revision A.l 1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E., Scuseria, M. A. Robb, J.R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B., Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P., Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A., Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head_Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.Google Scholar
  33. 33).
    Fonseca Guerra, C., Visser, O., Snijders, J. G., te Velde, G. and Baerends, E. J. (1995) Methods and Techniques for Computational Chemistry, Parallelisation of the Amsterdam Density Functional Program., Clementi, E., Corongiu, G. Eds, STEF, Cagliari, pp 305–395.Google Scholar
  34. 34).
    Available at Scholar
  35. 35).
    Schaftenaar, G. and Noordik, J.H., (2000) J. Comput.-Aided Mol. Design 14, 123 ( Scholar
  36. 36).
    Halls and M. D., Schlegel, H. B. (2001) Chem. Mater. 13, 2632CrossRefGoogle Scholar
  37. 37).
    Kushto, G. P., Iizumi, Y., Kido, J. and Kafafi, Z. H. (2000) J. Phys. Chem. A 104, 3670CrossRefGoogle Scholar
  38. 38).
    Anderson, J. D., McDonald, E. M., Lee, P. A., Anderson, M. L., Ritchie, E. L., Hall, H. K., Hopkins, T., Mash, E. A., Wang, J., Padias, A., Thayumanavan, S., Barlow, S., Marder, S. R., Jabbour, G. E., Shaheen, S., Kippelen, B., Peyghambarian, P., Wightman, R. M. and Armstrong, N. R. (1998) J. Am. Chem. Soc. 120, 9646CrossRefGoogle Scholar
  39. 39).
    Hopkins, T. A., Meerholz, K., Shaheen, S., Anderson, M. L., Schimdt, A., Kippelen, B., Padias, A. B., Hall, H. K., Peyghambarian, Jr. H. and Armstrong, N. R. (1996) Chem. Mater. 8, 344CrossRefGoogle Scholar
  40. 40).
    Garbuzov, D. Z., Bulovic, V., Burrows, P. E. and Forrest, S. R. (1996) Chem. Phys. Lett. 249, 433CrossRefGoogle Scholar
  41. 41).
    Martin, R.L., Kress, J. D., Campbell, I. H. and Smith, D.L. (2000) Phys. Rev. B 61, 15804CrossRefGoogle Scholar
  42. 42).
    Hameka, H.F., (1967) Triplet decay and Intersystem Crossing in Aromatic Hydrocarbons, edited by Zahlan, A.B., Androes, G.M., Hameka, H.F.: Heineken F.M., Hutchison, C.A., Jr., Robinson, G.W., van der Waals, J.H., Cambridge University Press, CambridgeGoogle Scholar
  43. 43).
    Birks, J.B. (1970) Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970Google Scholar
  44. 44).
    Kasha, M. (1950) Discuss. Faraday Soc. 9, 14CrossRefGoogle Scholar
  45. 45).
    Burin, A.L. and Ratner M.A. (1998) J. Chem. Phys. 109, 6092CrossRefGoogle Scholar
  46. 46).
    van Veldhoven, E., Zhang, H. and Glasbeek, M. (2001) J. Phys. Chem. A 105, 1687CrossRefGoogle Scholar
  47. 47).
    Papadimitrakopoulos, F., Zhang, X.-M., Thomsen, D. L. and Higginson, K.A. (1996) Chem. Mater. 8 1363CrossRefGoogle Scholar
  48. 48).
    Bardez, E., Devol, I., Larrey, B. and Valeur, B. (1997) J. Phys. Chem. ? 101, 7786CrossRefGoogle Scholar
  49. 49).
    Purcell, K. F. and Kotz, J. C., (1977) Inorganic Chemistry, Holt-Saunders International EditionsGoogle Scholar
  50. 50).
    Amati, M. and Lelj, F., (2002) Chem. Phys. Letter 358, 144CrossRefGoogle Scholar
  51. 51).
    Amati, M. and Lelj, F., (2002) Chem. Phys. Letter 363, 451CrossRefGoogle Scholar
  52. 52).
    Amati, M. and Lelj, F., (2003) J. Phys. Chem. A in pressGoogle Scholar
  53. 53).
    Amati, M. and Lelj, F., manuscript in preparationGoogle Scholar
  54. 54).
    Colle, M., Dinnebier, R. E. and Brutting, W., (2002) Chem. Commun., pp. 2908Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Mario Amati
    • 1
  • Francesco Lelj
    • 1
  1. 1.La.MI Dipartimento di Chimica and LaSCAMM, INSTM Sezione BasilicataUniversita’ della BasilicataPotenzaItaly

Personalised recommendations