Skip to main content

Finite-Step Algorithms for Single-Controller and Perfect Information Stochastic Games

  • Conference paper
Stochastic Games and Applications

Part of the book series: NATO Science Series ((ASIC,volume 570))

Abstract

After a brief survey of iterative algorithms for general stochastic games, we concentrate on finite-step algorithms for two special classes of stochastic games. They are Single-Controller Stochastic Games and Perfect Information Stochastic Games. In the case of single-controller games, the transition probabilities depend on the actions of the same player in all states. In perfect information stochastic games, one of the players has exactly one action in each state. Single-controller zero-sum games are efficiently solved by linear programming. Non-zero-sum single-controller stochastic games are reducible to linear complementary problems (LCP). In the discounted case they can be modified to fit into the so-called LCPs of Eave’s class L.In the undiscounted case the LCP’s are reducible to Lemke’s copositive plus class. In either case Lemke’s algorithm can be used to find a Nash equilibrium. In the case of discounted zero-sum perfect information stochastic games, a policy improvement algorithm is presented. Many other classes of stochastic games with orderfield property still await efficient finite-step algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardi, M., Raghavan, T.E.S. and Parthasarathy, T. (1999)Stochastic and Differential Games Theory and Numerical Methods Bikhauser, Berlin.

    Book  MATH  Google Scholar 

  2. Bewley, T. and Kohlberg, E. (1978) On stochastic games with stationary optimal strategiesMathematics of Operations Research 2104–125.

    Article  MathSciNet  Google Scholar 

  3. Blackwell, D. (1962) Discrete dynamic programmingAnnals of Mathematical Statistics 33719–726.

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackwell, D. (1969) InfiniteGagames with imperfect information,Zastosowania Matematyki 10, 99–101.

    MathSciNet  MATH  Google Scholar 

  5. Blackwell, D. (1989) Operator solution of infinite Gs games of imperfect informationin T.W. Anderson, K. Athreya, D.L. Iglehart(eds.), Probability Statistics and Mathematics: Papers in Honor of Samuel KarlinAcademic Press, New York, pp. 83–87.

    Google Scholar 

  6. Breton, M. (1987) Equilibre pour des jeux sequential, Ph.D. thesis, University of Montreal.

    Google Scholar 

  7. Condon, A. (1992) The complexity of stochastic gamesInformation and Computing96,203–224.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottle, R.W., Pang, J.S. and Stone, R.E. (1992)The Linear Complementary ProblemAcademic Press, Boston.

    Google Scholar 

  9. Eaves, B. (1971) Linear complementarity problemManagement Science 17612–634.

    Article  MathSciNet  MATH  Google Scholar 

  10. Everett, H. (1957) Recursive games, in M. Dresher, A. W. Tucker, P. Wolfe (eds.)Contributions to the Theory of Games Vol. IIIAnnals of Mathematics Studies 39, Princeton University Press, Princeton, NJ, pp. 47–78.

    Google Scholar 

  11. Filar, J.A. and Raghavan, T.E.S. (1984) A matrix game solution of the single-controller stochastic gameMathematics of Operations Research9, 356–362.

    Article  MathSciNet  MATH  Google Scholar 

  12. Filar, J.A. and Schultz, T.A. (1987) Bilinear programming and structured stochastic gamesJournal of Optimization Theory and Applications 5385–104.

    Article  MathSciNet  MATH  Google Scholar 

  13. Filar, J.A. and Vrieze, O.J. (1996)Competitive Markov Decision ProcessesSpringer-Verlag, Berlin.

    Book  Google Scholar 

  14. Fink, A.M. (1964) Equilibrium points of stochastic non-cooperative gamesJournal of Science of the Hiroshima University Series A-I 2889–93.

    MathSciNet  MATH  Google Scholar 

  15. Garcia, C. B. (1973) Some classes of matrices in linear complementarity theoryMathematical Programming 5299–310.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gillette, D. (1957) Stochastic games with zero stop probabilities, in M. Dresher, A.W. Tucker, P. Wolfe (eds.)Contributions to the Theory of Games Vol. IIIAnnals of Mathematics Studies 39, Princeton University Press, Princeton, NJ, pp. 179–188.

    Google Scholar 

  17. Gurwich, V.A., Karzanov, A.V. and Khachiyan, L.G. (1988) Cyclic games and an algorithm to find minimax cycle means in directed graphsUSSR Computational Mathematics and Mathematical Physics 2885–91.

    Article  Google Scholar 

  18. Hoffman, A.J. and Karp, R.M. (1966) On non-terminating stochastic gamesManagement Science 12359–370.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hordijk, A. and Kallenberg, L.C.M. (1979) Linear programming and Markovian decision chainsManagement Science 25352–362.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hordijk, A. and Kallenberg, L.C.M. (1984) Linear programming and Markov games, in O. Moeschlin, D. Pallaschke (eds.)Game Theory and Mathematical EconomicsNorth-Holland, Amsterdam, pp. 307–319.

    Google Scholar 

  21. Howard, R.A. (1960)Dynamic Programming and Markov ProcessesWiley, New York.

    MATH  Google Scholar 

  22. Kallenberg, L.C.M. (1983) Linear programming and finite Markovian control problems, Mathematical Centre Tract 148, Centre for Mathematics and Computer Science, Amsterdam.

    Google Scholar 

  23. Krishna, V. and Sjöstrom, T. (1998) On the convergence of fictitious playMathe-maties of Operations Research23, 479–511.

    Article  MATH  Google Scholar 

  24. Lemke, C. E. (1964) Bimatrix equilibrium points and mathematical programmingManagement Science11, 681–689.

    Article  MathSciNet  Google Scholar 

  25. Lemke, C.E. and Howson, Jr. J.J. (1964) Equilibrium points of bimatrix gamesJournal of the Society of Industrial and Applied Mathematics12, 413–423.

    Article  MathSciNet  MATH  Google Scholar 

  26. Liggett, T.M. and Lippman, S. A. (1969) Stochastic games with perfect information and time average payoffSIAM Review11, 604–607.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ludwig, W. (1995) A subexponential randomized algorithm for the simple stochastic game problemInformation and Computation117, 151–155.

    Article  MathSciNet  MATH  Google Scholar 

  28. Melekopoglou, M. and Condon, A. (1994) On the complexity of the policy improvement algorithm for Markov decision processesORSA Journal on Computing6, 188–192.

    Article  MATH  Google Scholar 

  29. Mertens, J.-F. and Neyman, A. (1981) Stochastic gamesInternational Journal of Game Theory10, 53–56.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mertens, J.-F. and Parthasarathy, T. (1987) Equilibria for discounted stochastic games, CORE Discussion Paper 8750, Université Catholique de Louvain, Louvainla-Neuve, Belgium (Chapter 10 in this volume).

    Google Scholar 

  31. Mertens, J.-F. and Parthasarathy, T. (1991) Non-zero-sum stochastic games in T.E.S. Raghavanet al., Stochastic Games and Related Topics Kluwer Academic Publishers, Dordrecht, pp. 145–148.

    Chapter  Google Scholar 

  32. Mohan, S.R., Neogy, S.K. and Parthasarathy, T. (1997) Linear complementarity and discounted polystochastic games when one player controls transitionsin M.C. Ferris, J.-S. Pang(eds.), Complementarity and Variational ProblemsSIAM, Philadelphia, PA, pp. 284–294.

    Google Scholar 

  33. Mohan, S.R. and Raghavan, T.E.S. (1987) An algorithm for discounted switching control stochastic gamesOR Spektrum9, 41–45.

    Article  MathSciNet  MATH  Google Scholar 

  34. Nowak, A. S. and Raghavan, T.E.S (1992) A finite-step algorithm via a bimatrix game to a single-controller non-zero-sum stochastic gameMathematical Programming17, 519–526.

    MathSciNet  MATH  Google Scholar 

  35. Parthasarathy, T. and Raghavan, T.E.S. (1981) An orderfield property for stochastic games when one player controls transition probabilitiesJournal of Optimization Theory and Applications33, 375–392.

    Article  MathSciNet  MATH  Google Scholar 

  36. Parthasarathy, T., Tijs, S.J. and Vrieze, O.J. (1984) Stochastic games with state independent transitions and separable rewards, in G. Hammer, D. Pallaschke (eds.)Selected Topics in OR and Mathematical EconomicsSpringer-Verlag, Lecture Notes Series 226, pp. 262–271.

    Chapter  Google Scholar 

  37. Pollatschek, M. and Avi-Itzhak, B. (1969) Algorithms for stochastic games with geometrical interpretationManagement Science15, 399–425.

    Article  MathSciNet  MATH  Google Scholar 

  38. Raghavan, T.E.S., Ferguson, T.S., Parthasarathy, T. and Vrieze, O.J. (eds.) (1990)Stochastic Games and Related Topics: A Volume in Honor of L.S. ShapleyKluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  39. Raghavan, T.E.S. and Filar, J.A. (1991) Algorithms for stochastic games - A surveyZeitschrift für Operations Research35, 437–472.

    MathSciNet  MATH  Google Scholar 

  40. Raghavan, T.E.S. and Syed, Z. (2002) A policy improvement-type algorithm for solving zero-sum two-person stochastic games of perfect informationMathematical Programmingto appear.

    Google Scholar 

  41. Raghavan, T.E.S. and Syed, Z. (2002) An algorithm to solve non-zero-sum undiscounted single-controller stochastic games, Mathematics of Operations Research, to appear.

    Google Scholar 

  42. Raghavan, T.E.S. and Syed, Z. (2002) A policy improvement-type algorithm for solving zero-sum two-person stochastic games of a special class, Zeitschrift für Op-erations Research, to appear.

    Google Scholar 

  43. Raghavan, T.E.S., Tijs, S.J. and Vrieze, O.J. (1986) Stochastic games with additive rewards and additive transitionsJournal of Optimization Theory and Applications47, 451–464.

    Article  MathSciNet  Google Scholar 

  44. Shapley, L.S. (1953) Stochastic gamesProceedings of the National Academy of Sciences of the U.S.A. 39, 1095–1100 (Chapter 1 in this volume).

    Article  MathSciNet  MATH  Google Scholar 

  45. Shultz, T.A. (1987) Mathematical programming and stochastic games, Ph.D. thesis, The Johns Hopkins University.

    Google Scholar 

  46. Solan, E. (1998), Discounted stochastic gamesMathematics of Operations Research23, 1010–1021.

    Article  MathSciNet  MATH  Google Scholar 

  47. Takahashi, M. (1964) Equilibrium points of stochastic non-cooperative n-person gamesJournal of Science of the Hiroshima University Series A-I 28, 95–99.

    MATH  Google Scholar 

  48. Thuijsman, F. and Raghavan, T.E.S (1997) Stochastic games with switching control or ARAT structure, Technical Report M94–06, University of Limburg, Maastricht, The Netherlands.

    Google Scholar 

  49. Van der Waal, J. (1977) Discounted Markov games: Successive approximations and stopping timesInternational Journal of Game Theory6, 11–22.

    Article  MathSciNet  Google Scholar 

  50. Vrieze, O.J. (1981) Linear programming and undiscounted stochastic game in which one player controls transitionsOR Spektrum3, 29–35.

    Article  MATH  Google Scholar 

  51. Vrieze, O.J. (1983) Stochastic games with finite state and action spaces, University of Nijmegen, Nijmegen, The Netherlands.

    Google Scholar 

  52. Vrieze, O.J., Tijs, S.J., Raghavan, T.E.S. and Filar, J.A. (1983) A finite algorithm for switching control stochastic gamesOR Spektrum5, 15–24.

    Article  MATH  Google Scholar 

  53. Zwick, U. and Paterson, M.S. (1996) The complexity of mean payoff games on graphsTheoretical Computer Science158, 343– 359.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Raghavan, T.E.S. (2003). Finite-Step Algorithms for Single-Controller and Perfect Information Stochastic Games. In: Neyman, A., Sorin, S. (eds) Stochastic Games and Applications. NATO Science Series, vol 570. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0189-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0189-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1493-2

  • Online ISBN: 978-94-010-0189-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics