Skip to main content

Chemistry and Collisions in Natural and Technological Aquatic Environments

  • Conference paper
Role of Interfaces in Environmental Protection

Part of the book series: NATO Science Series ((NAIV,volume 24))

  • 257 Accesses

Abstract

All processes for particle removal in potable water treatment require proper design and control of solution and interfacial chemistry and of interparticle collisions. This is also true for most processes used to remove particle-reactive pollutants such as natural organic matter (NOM) and arsenic. The treatment processes involved span a range from conventional plants with coagulation, flocculation, sedimentation and packed bed filtration through direct filtration, flotation, solids contact systems and microsand facilities and on to various membrane technologies. The “collisions” provided by each of these technologies differ in important ways. It follows that the “chemistry” most appropriate to each of them can also differ significantly and substantially. Similarly, the aggregation and settling of particles in rivers, lakes, estuaries and the ocean and also the deposition of colloidal particles in ground waters depend on surface and solution chemistry and on collisions of suspended particles with each other or with other media such as aquifer materials. This paper presents a discussion of the similarities and the differences in the chemistry and the collisions appropriate to some of these aquatic systems. It includes a focus on the colloid chemical role of natural organic matter in potable water treatment and in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yao, K.-M., Habibian, M.T., and O’Melia, C.R. (1971) Water and Wastewater Filtration: Concepts and Applications, Environmental Science and Technology, 5, 1105–1112.

    Article  CAS  Google Scholar 

  2. Rajagopalan, R. and Tien, C. (1976) Trajectory Analysis of Deep-Bed Filtration with Sphere-in-cell Porous Media Model. American Institute of Chemical Engineers Journal, 22, 523–533.

    Article  CAS  Google Scholar 

  3. Friedlander, S.K. (1958) Theory of Aerosol Filtration, Industrial and Engineering Chemistry, 50, 1161–1164.

    Article  CAS  Google Scholar 

  4. Billings, CE., 1966 Effects of Particle Accumulation in Aerosol Filtration, W.M. Keck Laboratory of Environmental Health Engineering, California Institute of Technology, Pasadena.

    Google Scholar 

  5. O’Melia, C.R. and Ali, W., 1978, The Role of Retained particles in Deep Bed Filtration, Progress in Water Science and Technology, 10, 167–182.

    Google Scholar 

  6. O’Melia, C.R., Hahn, M.W., and Chen, C.-T. (1997) Some Effects of Particle Size in Separation Processes Involving Colloids, Water Science and Technology, 36, 119–126

    Article  Google Scholar 

  7. Verwey, E.J. W. and Overbeek, J.Th.G. (1948) Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.

    Google Scholar 

  8. Hahn, M.W., (1995) Deposition and Reentrainment of Brownian Particles under Unfavorable Chemical Conditions, Ph.D. dissertation, The Johns Hopkins University, Baltimore 263 pp..

    Google Scholar 

  9. Hogg, R., Healy, T.W., and Fuerstenau, D.W. (1966) Mutual Coagulation of Colloidal Dispersions, Transactions of the Faraday society, 66, 1638–1651.

    Article  Google Scholar 

  10. Gregory, J. (1981) Approximate Expressions for the Retarded van der Waals Interaction, Journal of Colloid and Interface Science, 83, 138–145.

    Article  CAS  Google Scholar 

  11. Simha, R., Frisch, H.L., and Eirich, F.R. (1953) The Adsorption of Flexible Macromolecules, Journal of Physical Chemistry, 57, 584–589.

    Article  CAS  Google Scholar 

  12. Scheutjens, J.M.H.M. and Fleer, G.J. (1979) Statistical Theory of the Adsorption of Interacting Chain Molecules. 1. Partition Function, Segment Density Distribution, and Adsorption Isotherm, Journal of Physical Chemistry, 83, 1619–1635.

    Article  CAS  Google Scholar 

  13. Scheutjens, J.M.H.M. and Fleer, G.J. (1980) Statistical Theory of the Adsorption of Interacting Chain Molecules. 2. Train, Loop, and Tail Size Distribution, Journal of Physical Chemistry, 84,178–190.

    Article  CAS  Google Scholar 

  14. Böhmer, M.R., Evers, A.O.A. and Scheutjens, J.M.H.M (1990) Weak Polyelectrolytes between Two Surfaces: Adsorption and Stabilization, Macromolecules, 23, 2288–2301.

    Article  Google Scholar 

  15. Blaakmeer, J., Böhmer, M.R., Cohen Stuart, M.A. and Fleer, G.J. (1990) Adsorption of Weak Polyelectrolytes on Highly Charged Surfaces. Poly(acrylic acid) on Polystyrene Latex with Strong Cationic Groups, Macromolecules, 23, 2301–2309.

    Article  CAS  Google Scholar 

  16. van der Schee, H.A. and Lyklema, J. (1984) A Lattice Theory of Polyelectrolyte Adsorption, Journal of Physical Chemistry, 88, 6661–6667.

    Article  Google Scholar 

  17. Lyklema, J. (1985) How Polymers Adsorb and Affect Colloid Stability, Flocculation, Sedimentation, and Consolidation: Proceedings of the Engineering Foundation Conference, B. M. Moudgil and P. Somasundaran, Eds., Engineering Foundation, New York.

    Google Scholar 

  18. Evers, O.A., Fleer, G.J. Scheutjens J.M.H.M. and Lyklema, J. (1986) Adsorption of Weak Polyelectrolytes from Solution, Journal of Colloid and Interface Science, 111, 446–454.

    Article  CAS  Google Scholar 

  19. Cohen Stuart, M.A., Cosgrove, T. and Vincent, B. (1986) Experimental Aspects of Polymer Adsorption at Solid/Liquid Interfaces, Advances in Colloid and Interface Science, 24, 143–239.

    Article  Google Scholar 

  20. Scheutjens, J.M.H.M., Fleer, G. I, and Cohen Stuart, M.A. (1986) End Effects in Polymer Adsorption: A Tale of Tales, Colloids and Surfaces, 21, 285–306.

    Article  CAS  Google Scholar 

  21. Fleer, G.J., Cohen Stuart, M.A., Scheutjens, J.M.H.M., Cosgrove, T., and Vincent, B. (1993) Polymers at Interfaces, Chapman and Hall, London.

    Google Scholar 

  22. Hoogeveen, N.G., Cohen Stuart, M.A., and Fleer, G.J. (1997) Polyelectrolyte Adsorption on Oxides. I. Kinetics and Adsorbed Amounts”, Journal of Colloid and Interface Science, 182, 133–145.

    Article  Google Scholar 

  23. Vermeer, A.W.P., Leermakers, F.A.M. and Koopal, L.K. (1997) Adsorption of Weak Polyelectrolytes on Surfaces with a Variable Charge. Self-Consistent-Field Calculations, Langmuir, 13, 4413–4421.

    Article  CAS  Google Scholar 

  24. Tiller, Christine. L. (1993) Colloidal Stability in Natural Waters: Experimental and Model Studies of the Role of Natural Organic Matter, unpublished doctoral dissertation, The Johns Hopkins University, Baltimore, 246 pp.

    Google Scholar 

  25. Yang, S. (1996) Effects of Adsorbed Natural Organic Matter on Colloidal Stability in Aquatic Systems, unpublished doctoral dissertation, The Johns Hopkins University, Baltimore, 148 pp.

    Google Scholar 

  26. Au, K.-K. (1998,) Natural Organic Matter at Solid/Liquid Interfaces: Complexation, Conformation, and Colloidal Stabilization, unpublished doctoral dissertation, The Johns Hopkins University, Baltimore, 285 pp.

    Google Scholar 

  27. Tiller, C.L. and O’Melia, C.R. (1993) Natural Organic Matter and Colloidal Stability: Models and Measurements, Colloids and Surfaces A, 73, 89–102.

    Article  CAS  Google Scholar 

  28. Au, K.-K., Yang, S. and O’Melia, C.R. (1998) Adsorption of Weak Polyelectrolytes on Metal Oxide Surfaces: A Hybrid Approach, Environmental Science and Technology, 32, 2900–2908.

    Article  CAS  Google Scholar 

  29. Au, K.-K., Penisson, A.C., Yang, S. and O’Melia, C.R. (1999) Natural Organic Matter at Oxide/water Interfaces: Complexation and Conformation, Geochimica et Cosmochimica Acta, 63, 2903–2917.

    Article  CAS  Google Scholar 

  30. Flory, P. J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York.

    Google Scholar 

  31. Silberberg, A., (1968) Adsorption of Flexible Macromolecules. IV. Effect of Solvent-Solute Interactions, Solute Concentration, and Molecular Weight, Journal of Chemical Physics, 48, 2835–2851.

    Article  CAS  Google Scholar 

  32. Vermeer, A.W.P., van Riemsdijk, W.H. and Koopal, L.K. (1998) Adsorption of Humic Acid to Mineral Particles. 1. Specific and Electrostatic Interactions, Langmuir, 14, 2810–2819.

    Article  CAS  Google Scholar 

  33. Vermeer, A.W.P. and Koopal, L.K. (1998) Adsorption of Humic Acid to Mineral Particles. 2. Polydispersity Effects with Polyelectrolye Adsorption, Langmuir, 14, 4210–4216.

    Article  CAS  Google Scholar 

  34. Vermeer, A.W.P. and Koopal, L.K. (1999) Charge Adjustments upon Adsorption of a Weak Polyelectrolyte to a Mineral Oxide: The Hematite-Humic Acid System, Journal of Colloid and Interface Science, 212, 176–185.

    Article  CAS  Google Scholar 

  35. Stumm, W., Huang, C.P., and Jenkins, S.R. (1970) Specific Chemical Interaction Affecting the Stability of Dispersed Systems, Croatica Chemica Acta, 42, 223–245.

    CAS  Google Scholar 

  36. Davis, J.A. and Leckie, J.O. (1978) Effects of Adsorbed Complexing Ligands on Trace Metal Uptake by Hydrous Oxides, Environmental Science and Technology, 12, 1309–1315.

    Article  CAS  Google Scholar 

  37. Stumm, W., Kummert, R. and Sigg, L. (1980) A Ligand Exchange Model for the Adsorption of Inorganic and organic Ligands on Hydrous Oxide Surfaces, Croatica Chemica Acta, 53, 291–312.

    CAS  Google Scholar 

  38. Westall, J. and Hohl, H., (1980) A Comparison of Electrostatic Models for the Oxide/Solution Interface, Advances in Colloid and Interface Science, 12, 265–294.

    Article  CAS  Google Scholar 

  39. Schindler, P.W. (1981) Surface Complexes at Oxide-Water Interfaces, in Adsorption of Inorganics at Solid-Water Interfaces, M. A. Anderson and A. J. Rubin, Eds., Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  40. Hiemstra, T., van Riemsdik, W.H. and Bolt, G.H. (1989) Multisite Proton Adsorption Modeling at the Solid/Solution Interface of (Hydr)oxides: A New Approach. I. Model Description and Evaluation of Intrinsic Constants, Journal of Colloid and Interface Science, 133, 91–104.

    Article  CAS  Google Scholar 

  41. Hiemstra, T., van Riemsdik, W.H. and Bolt, G.H. (1989) Multisite Proton Adsorption Modeling at the Solid/Solution Interface of (Hydr)oxides: A New Approach, n. Application to Various Important (Hydr)oxides, Journal of Colloid and Interface Science, 133, 105–117.

    Article  CAS  Google Scholar 

  42. Dzombak, D.A. and Morel, F.M.M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide, John Wiley and Sons, New York, 393 pp.

    Google Scholar 

  43. Stumm, W. (1992) Chemistry of the Solid-Water Interface, John Wiley and Sons, New York.

    Google Scholar 

  44. Westall, J.C. (1995) Modeling of the Adsorption of Metal Ions with Heterogeneous Environmental Sorbents”, Materials Research Society Symposium Proceedings, Materials Research Society, 353, 937–950.

    Article  CAS  Google Scholar 

  45. Borkovec, M., Rusch, U., Cernik, M., Korper, G. J.M. and Westall, J.C. (1996) Affinity distributions and acid-base properties of homogeneous and heterogeneous sorbents: exact results versus experimental data inversion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 285–296.

    Article  CAS  Google Scholar 

  46. Sverjensky, D., (1993) Physical surface complexation models for sorption at the mineral-water interface, Nature, 364, 776–780.

    Article  CAS  Google Scholar 

  47. Sverjensky, D. and Sahai, N. (1996) Theoretical Prediction of Single-Site Surface-Protonation Equilibrium Constants for Oxides and Silicates in Water, Geochimica et Cosmochimica Acta, 60, 3773–3797.

    Article  CAS  Google Scholar 

  48. Rustad, J.R., Felmy, A.R. and Hay, B.P. (1996) Molecular statics calculations for iron oxide and oxyhydroxide minerals: Toward a flexible model of the reactive mineral-water interface, Geochimica et Cosmochimica Acta, 60, 1553–1562.

    Article  CAS  Google Scholar 

  49. Rustad, J.R., Felmy, A.R. and Hay, B.P. (1996) Molecular statics calculations for iron oxide and oxyhydroxide minerals: A new approach to estimating stability constants for multisite surface complexation models, Geochimica et Cosmochimica Acta, 60, 1553–1562.

    Article  CAS  Google Scholar 

  50. Stumm, W. and Morgan, J.J. 1962 Chemical Aspects of Coagulation, Journal American Water Works Association, 54, 971–994.

    CAS  Google Scholar 

  51. Kennedy, M.J., Pevear, D.R.. and Hill, R.J. (2000) Mineral Surface Control of Organic Carbon in Black Shale, Science, Vol. 295, 657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

O’Melia, C.R. (2003). Chemistry and Collisions in Natural and Technological Aquatic Environments. In: Barany, S. (eds) Role of Interfaces in Environmental Protection. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0183-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0183-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1479-6

  • Online ISBN: 978-94-010-0183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics