Advertisement

Time-Varying Cardiovascular Oscillations

  • V. N. Smelyanskiy
  • D. A. Timucin
  • D. G. Luchinsky
  • A. Stefanovska
  • A. Bandrivskyy
  • P. V. E. McClintock
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 110)

Abstract

Signals derived from the human cardiovascular system (CVS) are exceptionally complex, being time-varying, noisy, and of necessarily limited duration. Yet an appropriate analysis of them may be expected to yield detailed information about the dynamics of the underlying physiological processes. A new approach to the analysis and modelhng of CVS signals is proposed. It combines decomposition of the signals into principal modes and a novel method of parameter identification in nonlinear stochastic systems based on Bayesian inference. The scheme is tested on a noisy Van der Pol oscillator, for which it yields rapid convergence and correct inference of the known parameters. Preliminary applications to CVS data are discussed.

Keywords

Probability Density Function Empirical Mode Decomposition Oscillatory Component Observe Time Series Nonlinear Stochastic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bracic, P. V. E. McClintock, and A. Stefanovska, “Characteristic frequencies of the human blood distribution system,” in D. S. Broomhead, E. A. Luchinskaya, P. V. E. McClintock, and T. Mullin, editors. Stochastic and Chaotic Dynamics in the Lakes, pp. 146–153, Melville, New York. American Institute Physics, 2000.Google Scholar
  2. [2]
    A. J. Camm, M. Malik, J. T. Bigger, and et al., “Heart rate variability — Standards of measurement, physiological interpretation, and chnical use,” Circulation, vol. 93, pp. 1043–1065, 1996.CrossRefGoogle Scholar
  3. [3]
    R. Graham, “Path integral formulation of general diffusion processes,” Z Phys. B, vol. 26, pp. 281–290, 1977.CrossRefGoogle Scholar
  4. [4]
    H. Haken, “Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems,” Review of Modern Physics, vol. 47, pp. 67–119, 1975.MathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Hozic and A. Stefanovska, “Karhunen — Loève decomposition of peripheral blood flow,” Physica A, vol. 281, pp. 587–601, 2000.CrossRefGoogle Scholar
  6. [6]
    N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonhnear and non-stationary time series analysis,” Proc. R. Soc. Lond. A, vol. 454, pp. 903–995, 1998.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    D. T. Kaplan and C. L. Bremer, “Markov chain Monte Carlo estimation of nonlinear dynamics from time series,” Physica D, vol. 160, no. 1–2, pp. 116–126, 2001.MATHGoogle Scholar
  8. [8]
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin, 1984.MATHCrossRefGoogle Scholar
  9. [9]
    S. C. Malpas, “Neural influences on cardiovascular variability: possibilities and pitfalls,” Am. J. Physiol.: Heart. Circ. Physiol, vol. 282, pp. H6–H20, 2002.Google Scholar
  10. [10]
    R. Meyer and N. Christensen, “Bayesian reconstruction of chaotic dynamical systems,” Phys. Rev E, vol. 62, pp. 3535–3542, 2000.CrossRefGoogle Scholar
  11. [11]
    M. Palus and D. Novotna, “Detecting modes with nontrivial dynamics embedded in collored noise: enhanced Monte Carlo SSA and the case of chmate oscillations,” Phys. Lett. A, vol 248, pp. 191–202, 1998.CrossRefGoogle Scholar
  12. [12]
    J. V. Ringwood and S. C. Malpas, “Slow oscillation in blood pressure via a nonhnear feedback model,” Am. L Physiol: Heart. Circ. Physiol, vol. 280, pp. R1105–R1115, 2001.Google Scholar
  13. [13]
    H. Seidel and H. Herzel, “Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex,” Physica D, vol. 115, pp. 145–160, 1998.MATHCrossRefGoogle Scholar
  14. [14]
    A. Stefanovska and M. Bracic, “Physics of the human cardiovascular system,” Contemporary Physics, vol. 40, pp. 31–55, 1999.CrossRefGoogle Scholar
  15. [15]
    A. Stefanovska, M. Bracic, S. Strle, and H. Haken, “The cardiovascular system as coupled oscillators?“ Physiol Meas., vol. 22, pp. 535–550, 2001.CrossRefGoogle Scholar
  16. [16]
    A. Stefanovska, D. G. Luchinsky, and P. V. E. McClintock, “Modelling couplings among the oscillators of the cardiovascular system,” Physiol Meas., vol. 22, pp. 551–564, 2001.CrossRefGoogle Scholar
  17. [17]
    A. T. Winfree, The Geometry of Biological Time, Springer-Veriag, New York, 1980.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • V. N. Smelyanskiy
    • 1
  • D. A. Timucin
    • 1
  • D. G. Luchinsky
    • 2
  • A. Stefanovska
    • 2
    • 3
  • A. Bandrivskyy
    • 2
  • P. V. E. McClintock
    • 2
  1. 1.NASA Ames Research Center, MS 269-2Moffett FieldUSA
  2. 2.Department of PhysicsLancaster UniversityLancasterUK
  3. 3.Group of Nonlinear Dynamics and Synergetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations