Skip to main content

Passive Fields and Particles in Chaotic Flows

  • Conference paper
IUTAM Symposium on Nonlinear Stochastic Dynamics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 110))

  • 2728 Accesses

Abstract

Two examples for the interplay between chaotic dynamics and stochastic forces within hydrodynamical systems are considered. The first case concerns the relaxation to equilibrium of a concentration field subject to both chaotic advection and molecular diffusion. The concentration field develops filamentary structures and the decay rate depends non-monotonically on the diffusion strength. The second example concerns polymers, modelled as particles with an internal degree of freedom, in a chaotic flow. The length distribution of the polymers turns out to follow a power law with an exponent that depends on the difference between Lyapunov exponent and internal relaxation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Acrivos, H. Aref, and J. M. Ottino, editors (1991). Symposium on Fluid Mechanics of Stirring and Mixing, vol. 5 of Phys. Fluids A.

    Google Scholar 

  2. H. Aref, “Stirring by chaotic advection,” J. Fluid. Mech., vol. 143, p. 1, 1984.

    MathSciNet  MATH  Google Scholar 

  3. H. Aref, editor. Chaos Applied to Fluid Mixing, vol. 4 of Chaos, Solitons and Fractals, 1994.

    Google Scholar 

  4. H. Aref, “The development of chaotic advection,” Phys. Fluids, vol. 14, p. 1315, 2002.

    Article  MathSciNet  Google Scholar 

  5. E. Balkovsky, A. Fouxon, and V. Lebedev, “Turbulent dynamics of polymer solutions.” Phys. Rev. Lett., vol. 84, pp. 4765–4768, 2000.

    Article  Google Scholar 

  6. E. Balkovsky, A. Fouxon, and V. Lebedev, “Turbulence of polymer solutions,” Phys. Rev. E., vol. 64, 056301, 2001.

    Article  MathSciNet  Google Scholar 

  7. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids, volume I. (Fluid mechanics), II. (Kinetic theory). John Wiley & Sons, New York, 1987.

    Google Scholar 

  8. M. Chertkov, M. “Polymer stretching by turbulence,” Phys. Rev Lett., vol. 84, p. 4761, 2000.

    Article  Google Scholar 

  9. M. Cranston and M. Scheutzow, “Dispersion rates under finite mode Kolmogorov flows,” Ann. Appl. Prob., vol. 12, p. 511, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Dombre, U. Frisch, J. M. Greene, M. Henon, A. Mehr, and A. M. Soward, “Chaotic streamlines in the ABC flows,” J. Fluid. Mech., vol. 167, pp. 353–391, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Eckart, “An analysis of the stirring and mixing processes in incompressible fluids,” J. Mar. Res., vol. 7, p. 265, 1948.

    Google Scholar 

  12. B. Eckhardt, “Echoes in classical dynamical systems,” J. Phys. A, vol. 36, p. 371, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Eckhardt and E. Hascoët, “Chaotic advection by viscous dephasing,” preprint, 2002.

    Google Scholar 

  14. B. Eckhardt, J. Kronjäger, and J. Schumacher, “Stretching of polymers in a turbulent environment,” Comp. Phys. Commun., vol. 147, pp. 538–543, 2002.

    Article  MATH  Google Scholar 

  15. G. Falkovich, K. Gawedzki, and M. Vergassola, “Particles and fields in fluid turbulence,” Rev Mod. Phys., vol. 73, p. 913, 2002.

    Article  MathSciNet  Google Scholar 

  16. D. R. Fereday, P. H. Haynes, A. Wonhas, and J. C. Vassilicos, “Scalar variance decay in chaotic advection and Batchelor-regime turbulence,” Phys. Rev. E, vol. 65, 35301, 2002.

    Article  MathSciNet  Google Scholar 

  17. G. M. Homsy, H. Aref, K. S. Breuer, S. Hochgreb, J. R. Koseff, B. R. Munson, and K. G. Powell, “Multi-media fluid mechanics,” CD-ROM Cambridge University Press, 2000.

    Google Scholar 

  18. B. Jütner, D. Marteau, P. Tabeling, and A. Thess, “Numerical simulations of experiments on quasi-two-dimensional turbulence,” Phys. Rev. E, vol. 55, 5479, 1997.

    Article  Google Scholar 

  19. R. Klages, “Transitions from deterministic to stochastic diffusion,” Europhys. Lett., vol. 57, p. 796, 2002.

    Article  Google Scholar 

  20. R. Klages and J. Dorfman, “Simple maps with fractal diffusion coefficients,” Phys. Rev. Lett., vol 74, p. 387, 1995.

    Article  Google Scholar 

  21. R. Klages and J. Dorfman, “Simple deterministic dynamical systems with fractal diffusion coefficients,” Phys. Rev E., vol. 59, 5361, 1999.

    Article  MathSciNet  Google Scholar 

  22. R. Klages and J. R. Dorfman, “Dynamical crossover in deterministic diffusion,” Phys. Rev E., vol. 55, p. 1247, 1997.

    Article  Google Scholar 

  23. V. I. Klyatskin, W. A. Woyczynski, and D. Gurarie, “Diffusing passive tracers in random imcompressible flows: statistical topography aspect,” J. Stat. Phys., vol. 84, p. 797, 1996.

    Article  Google Scholar 

  24. J. Kronjäger, W. Braun, and B. Eckhardt, “Polymer stretching in stationary flows,” preprint, 2002.

    Google Scholar 

  25. J. L. Lumley, “Drag reduction by additives,” Ann. Rev. Fluid Mech., vol. 1, p. 367, 1969.

    Article  Google Scholar 

  26. M. R. Maxey and J. J. Riley, “Equation of motion for small rigid sphere in a nonuniform flow,” Phys. Fluids, vol. 26, p. 883, 1983.

    Article  MATH  Google Scholar 

  27. J. M. Ottino, The kinematics of Mixing: Stretching, Chaos and Transport, Cambridge University Press, 1989.

    Google Scholar 

  28. R. Pierrehumbert, “Tracer microstructure in the large-eddy dominated regime,” Chaos, Solitons, Fractals, vol. 4, p. 347, 1994.

    Google Scholar 

  29. D. Rothstein, E. Henry, and J. P. Gollub, “Persistent patterns in transient chaotic mixing,” Nature, vol. 401, pp. 110–112, 1999.

    Google Scholar 

  30. D. Somette and R. Cont, “Convergent multiplicative processes repelled from zero: Power laws and truncated power laws,” J. Phys. I France, vol. 7, pp. 431–444, 1997.

    Article  Google Scholar 

  31. G. Taylor, “Low Reynolds numbers flow,” (16mm film). (Newton, Massachusetts: Educational Services Incorporated.), 1960.

    Google Scholar 

  32. P S. Virk, “Drag reduction fundamentals,” AIChE J., vol. 21, pp. 625–656, 1975.

    Article  Google Scholar 

  33. B. S. Williams, D. Marteau, and J. P. Gollub, “Mixing of a passive scalar in magnetically forced two-dimensional turbulence,” Phys. Fluids, vol. 9, pp. 2061–2080, 1997.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Eckhardt, B., Hascoët, E., Braun, W. (2003). Passive Fields and Particles in Chaotic Flows. In: Namachchivaya, N.S., Lin, Y.K. (eds) IUTAM Symposium on Nonlinear Stochastic Dynamics. Solid Mechanics and Its Applications, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0179-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0179-3_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3985-7

  • Online ISBN: 978-94-010-0179-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics