Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 101))

  • 536 Accesses

Abstract

A non-perturbative approach to Generalized Parton Distributions, and to Deeply Virtual Compton Scattering in particular, based on off mass shell extension of dual amplitudes with Mandelstam analyticity (DAMA) is developed with the spin and helicity structure as well as the threshold behavior accounted for. The model is tested against the data on deep inelastic electron-proton scattering from JLab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller, D. et al. (1994) Wave Functions, Evolution Equations and Evolution Kernels from Light-Ray Operators of QCDFortschr. Phys. 42 pp. 101–142.

    Article  Google Scholar 

  2. Ji, X. (1997) Gauge invariant decomposition of nucleon spin and its spin-offPhys. Rev. Lett. 78 pp. 610–613.

    Article  ADS  Google Scholar 

  3. Radyushkin, A.V. (1996) Scaling limit of deeply virtual Compton scatteringPhys. Lett. B380 pp. 417–425; (1997) Nonforward parton distributions, Phys. Rev. D56 pp. 5524–5557.

    ADS  Google Scholar 

  4. Pire, B. (2002) Generalized Parton Distributions and Generalized Distribution Amplitudes: New Tools for Hadronic Physics, hep-ph/0211093.

    Google Scholar 

  5. Elouadrhirs, L., (2002) Deeply Virtual Compton Scattering at Jefferson Lab, Results and Prospects, hep-ph/0210341.

    Google Scholar 

  6. Jenkovszky, L.L., Magas, V.K., Predazzi, E. (2001) Resonance-reggeon and parton-hadron duality in strong interactionsEur. Phys. J. A12, pp. 361–367

    ADS  Google Scholar 

  7. Jenkovszky, L.L., Magas, V.K., Predazzi, E. Duality in strong interactions, nucl-th/0110085; Jenkovszky, L.L., Magas, V.K.Dual Properties of the Structure Functions, hep-ph/0111398Proceedings of the 31st International Symposium On Mul-tiparticle Dynamics (ISMD 2001)September 1–7, 2001Datong, China, pp. 74–77

    Google Scholar 

  8. Fiore, R. et al. (2002) Explicit model realizing parton-hadron duality, hep-ph/0206027, to appear in Eur. Phys. J A.

    Google Scholar 

  9. Freund, P. (1968) Finite energy sum rules and bootstrapsPhys. Rev. Lett. 20, pp. 235–237; Harari, H. (1968) Pomeranchuk trajectory and its relation to low-energy scattering amplitudes, Phys. Rev. Lett. 20, pp. 1395–1398.

    Article  ADS  Google Scholar 

  10. Csernai, L.P. et al. (2002) From Regge Behavior to DGLAP EvolutionEur. Phys. J. C24 (2002) pp. 205–211.

    Article  ADS  Google Scholar 

  11. Jenkovszky, L.L., Kononenko, S.Yu., Magas, V.K (2002) Diffraction from the direct-channel point of view: the background, hep-ph/0211158.

    Google Scholar 

  12. Stoler, P. (1991) Form-factors of excited baryons at high Q**2 and the transition to perturbative QCDPhys. Rev. Lett. 66 pp. 1003–1006; (1991) Form-factors of excited baryons at high Q**2 and the transition to perturbative QCD. 2., Phys. Rev. D44 pp. 73–80.

    Article  ADS  Google Scholar 

  13. Carlson, C.E., Mukhopadhyay, N.C. (1995) Leading log effects in the resonance electroweak form-factorsPhys. Rev. Lett. 74 pp. 1288–1291; (1998) Bloom-Gilman duality in the resonance spin structure functions, Phys. Rev. D58 094029.

    Article  ADS  Google Scholar 

  14. Davidovsky, V.V. and Struminsky, B.V. (2002) The Behavior of Form Factors of Nucleon Resonances and Quark-Hadron Duality, hep-ph/0205130 and in these Proceedings.

    Google Scholar 

  15. Bjorken, J.D. and Walecka, J.D., (1966) Electroproduction of nucleon resonancesAnn. Physics 38 pp. 35–62.

    Article  ADS  Google Scholar 

  16. Particle Data Group (1998) Eur. Phys. J C3 pp.1–794.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fiore, R., Flachi, A., Jenkovszky, L.L., Lengyel, A., Magas, V.K. (2003). Generalized Distribution Amplitudes: New Tools to Study Hadrons’ Structure and Interaction. In: Fiore, R., Jenkovszky, L.L., Kotsky, M.I., Magas, V.K., Papa, A. (eds) DIFFRACTION 2002: Interpretation of the New Diffractive Phenomena in Quantum Chromodynamics and in the S-Matrix Theory. NATO Science Series, vol 101. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0177-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0177-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1307-2

  • Online ISBN: 978-94-010-0177-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics