Skip to main content

Accelerated Algorithms 1: Lattice Models

  • Chapter
  • 524 Accesses

Part of the book series: NATO Science Series ((NAII,volume 114))

Abstract

We describe several algorithms that help overcome the long time-scales that limit Monte Carlo simulation studies of phase transitions. In addition to cluster Aipping, “N-fold way”, and multicanonical methods, we describe a quite new approach, “Wang- Landau sampling”, that estimates the density of states directly. Detailed case studies are made of the application of some of these methods near 1st order and 2nd order transitions in 2D Ising and Potts models and to the Edwards-Anderson spin glass. Lastly, we describe promising new methods for the improvement of deterministic, spin dynamics simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Landau and K. Binder, A Guide to Monte Carlo Methods in Statistical Physics, (Cambridge U. Press, Cambridge, 2000).

    Google Scholar 

  2. See also, N. Wilding and D. P. Landau, in Bridging Time Scales: Molecular Simulationns for the Next Decade, eds. P. Nielaba, M. Marechal, and G. Ciccotti (Springer, in press).

    Google Scholar 

  3. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  4. P. W. Kasteleyn and C. Fortuin, J. Phys. Soc. Japan Suppl. 26s, 11 (1969); C. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).

    ADS  Google Scholar 

  5. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  6. J.-S. Wang, Physica A 164, 240 (1990).

    Article  ADS  Google Scholar 

  7. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  8. Y. Tomita and Y. Okabe, Phys. Rev. Lett 86, 572 (2001).

    Article  ADS  Google Scholar 

  9. A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).

    Article  ADS  Google Scholar 

  10. M. A. Novotny, Phys. Rev. Lett. 74, 1 (1995); M. A. Novotny, Computers in Physics 9, 46 (1995)

    Article  ADS  Google Scholar 

  11. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992), Phys. Lett. B 267, 249 (1991); J. Lee, Phys. Rev. Lett. 71, 211 (1993); B. A. Berg, J. Stat. Phys. 82, 323 (1996), B. A. Berg, Nucl. Phys. B, 63, 982 (1998).

    Article  ADS  Google Scholar 

  12. W. Janke, in Dynamics of First Order Phase Transitions, eds. H. J. Herrmann,, W. Janke, and F. Karsch (World Scientific, Singapore, 1992)

    Google Scholar 

  13. F. Wang and D.P. Landau, Phys. Rev. Lett. 86 2050 (2001); F. Wang and D. P. Landau, Phys. Rev. E 64, 056101-1 (2001).

    Article  ADS  Google Scholar 

  14. D. P. Landau, Phys Rev. B 13, 2997 (1976).

    ADS  Google Scholar 

  15. J.-S. Wang, T. K. Tay and R. H. Swendsen, Phys. Rev. Lett. 82, 476 (1999).

    Article  ADS  Google Scholar 

  16. P. D. Beale, Phys. Rev. Lett. 76, 78 (1996).

    Article  ADS  Google Scholar 

  17. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).

    Article  ADS  Google Scholar 

  18. M. S. S. Challa, D.P. Landau and K. Binder, Phys. Rev. B 34, 1841 (1986).

    Article  ADS  Google Scholar 

  19. W. Janke and S. Kappler, Phys. Rev. Lett. 74, 212 (1995).

    Article  ADS  Google Scholar 

  20. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  21. S. F. Edwards and P. W. Anderson, J Phys. F. Metal Phys. 5 965 (1975).

    Article  ADS  Google Scholar 

  22. I. Morgenstern and K. Binder, Phys. Rev. B22, 288 (1980).

    ADS  Google Scholar 

  23. K. Binder in Fundamental problems in statistical mechanics V, edited by E. G. D. Cohen, (North-Holland, 1980).

    Google Scholar 

  24. D. P. Landau and M. Krech, J. Phys.: Condens. Matter 11, R179 (1999).

    Article  ADS  Google Scholar 

  25. M. Krech, A. Bunker, and D. P. Landau, Comp. Phys. Commun. 111, 1 (1999).

    Article  ADS  Google Scholar 

  26. M. Suzuki and K. Umeno in: Computer Simulation Studies in Condensed Matter Physics, VI, eds. D. P. Landau, K. K. Mon, and H.-B. Schttler (Springer, Berlin, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Landau, D.P. (2003). Accelerated Algorithms 1: Lattice Models. In: Dünweg, B., Landau, D.P., Milchev, A.I. (eds) Computer Simulations of Surfaces and Interfaces. NATO Science Series, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0173-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0173-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1464-2

  • Online ISBN: 978-94-010-0173-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics