Skip to main content

Cavity Quantum Electrodynamics with Single Atoms

  • Conference paper
Quantum Communication and Information Technologies

Part of the book series: NATO Science Series ((NAII,volume 113))

Abstract

Experiments with single atoms got routine. In this lecture two groups of those experiments will be reviewed with special emphasis on applications to study quantum phenomena in the atom-radiation interaction. The first one deals with the one-atom maser and the second one with another cavity quantum electrodynamic device on the basis of trapped ions. The latter device has interesting applications in quantum computing Quantum computing and quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meschede, D., Walther, H., and Müller, G. (1985) One-atom maser, Phys. Rev.Lett. 54, 551–554.

    Article  ADS  Google Scholar 

  2. For a review, see the articles by Haroche, S. and Raimond, J.M. (1985) Radiative properties of Rydberg states in resonant cavities, Advances in Atomic and Molecular Physics 20, 347–411; Gallas, J.A., Leuchs, G., Walther, H., and Figger, H. (1985) Rydberg atoms: high resolution spectroscopy and radiation interaction — Rydberg molecules, Advances in Atomic and Molecular Physics 20, 413–466.

    Article  ADS  Google Scholar 

  3. Jaynes, E.T. and Cummings, F.W. (1963) Comparison of quantum and semiclassical radiation theory with application to the beam maser, Proc. IEEE 51, 89-.

    Article  Google Scholar 

  4. See, for example: Eberly, J.H., Narozhny, N.B., and Sanchez-Mondragon, J.J. (1980) Periodic spontaneous collapse and revival in a simple quantum model, Phys. Rev. Lett. 44, 1323–1326, and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  5. Rempe, G., Walther, H., and Klein, N. (1987) Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58, 353–356.

    Article  ADS  Google Scholar 

  6. Weidinger, M., Varcoe, B. T. H., Heerlein, P., and Walther, H. (1999) Trapping states in the micromaser, Phys. Rev. Lett. 82, 3795–3798.

    Article  ADS  Google Scholar 

  7. Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M., and Haroche, S. (1999) Seeing a single photon without destroying it, Nature 400, 239–242.

    Article  ADS  Google Scholar 

  8. Meystre, P. (1992) Cavity quantum optics and the quantum measuement process, Progress in Optics 30, 261–355.

    Article  MathSciNet  Google Scholar 

  9. Raithel, G., Wagner, C., Walther, H., Narducci, L.M., and Scully, M.O. (1994) The micromaser: a proving ground for quantum physics, in P. Berman (ed.), Cavity Quantum Electrodynamics, Academic Press, New York, pp. 57–121

    Google Scholar 

  10. Englert, B., Löffler, M., Benson, O., Weidinger, M., Varcoe, B., and Walther, H. (1998) Entangled atoms in micromaser physics, Fortschr. Phys. 46, 897–926.

    Article  Google Scholar 

  11. Leibfried, D., Meekhof, D.M., King, B.E., Monroe, C., Itano, W. M., and Wineland, D. J. (1996) Experimental determination of the motional quantum state of a trapped atom, Phys. Rev. Lett 77, 4281–4285.

    Article  ADS  Google Scholar 

  12. Zbinden, H., Gisin, N., Huttner, B., and Tittel, W. (2000) Practical aspects of quantum cryptographic key distribution, J. Cryptol. 13, 207–220; Lo, H.-K. and Chau, H. F. (1999) Unconditional security of quantum key distribution over arbitrarily long distances, Science 283, 2050–2056.

    Article  MATH  Google Scholar 

  13. Gheri, K. M., Saavedra, C., Törmä, P., Cirac, J. I., and Zoller, P. (1998) Entanglement engineering of one-photon wave packets using a single-atom source, Phys. Rev. A 58, R2627–R2630; van Enk, S. J., Cirac, J. I., and Zoller, P. (1997) Ideal quantum communication over noisy channels: a quantum optical implementation, Phys. Rev. Lett. 78, 4293–4296; van Enk, S. J., Cirac, J. I., and Zoller, P. (1998) Photonic channels for quantum communication, Science 279, 205–208.

    Article  ADS  Google Scholar 

  14. Cirac, J. I., Zoller, P., Kimble, H. J., and Mabuchi, H. (1997) Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78, 3221–3224; Parkins, A. S., Marte, P., Zoller, P., and Kimble, H. J. (1993) Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence, Phys. Rev. Lett. 71, 3095–3098; Parkins, S. and Kimble, H. J. (1999) Quantum state transfer between motion and light, J. Opt. B. 1, 496–504.

    Article  ADS  Google Scholar 

  15. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., and Zeilinger, A. (2000) Quantum cryptography with entangled photons, Phys. Rev. Lett. 84, 4729–4732; Naik, D. S., Peterson, C. G., White, A. G., Berglund, A. J., and Kwiat, P. G. (2000) Entangled state quantum cryptography: eavesdropping on the Ekert protocol, Phys. Rev. Lett. 84, 4733–4736; Tittel, W., Brendel, J., Zbinden, H., and Gisin, N. (2000) Quantum cryptography using entangled photons in energy-time Bell states, Phys. Rev. Lett. 84, 4737–4740.

    Article  ADS  Google Scholar 

  16. Gottesman, D. and Chuang, I. L. (1999) Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390–393. See also Preskill, J. (1999) Plug-in quantum software, Nature 402, 357–358; Johnathon, D. and Plenio, M. B. (1999) Entanglement-assisted local manipulation of pure quantum states, Phys. Rev. Lett., 83, 3566–3569.

    Article  ADS  Google Scholar 

  17. Sources of single atoms, such as that described in this paper, are routinely employed for hypothetical tasks such as creation of an atomic beam with arbitrary timing sequence or for stabilisation of cavity states. See, for example, Vitali, D., Tombesi, P., and Milburn, G. (1998) Quantum-state protection in cavities, Phys. Rev. A 57, 4930–4944.

    Article  ADS  Google Scholar 

  18. Höffges, J. T., Baldauf, H. W., Lange, W., and Walther, H. (1997) Heterodyne measurement of the resonance fluorescence of a single ion, J. Mod. Opt. 44, 1999–2010.

    Article  ADS  Google Scholar 

  19. Diedrich, F. and Walther, H. (1987) Nonclassical radiation of a single stored ion, Phys. Rev. Lett. 58, 203–206.

    Article  ADS  Google Scholar 

  20. Höffges, J. T., Baldauf, H. W, Eichler, T., Helmfrid, S.R., and Walther, H. (1997) Heterodyne measurement of the fluorescent radiation of a single trapped ion, Opt. Coram. 133 170–174.

    Article  ADS  Google Scholar 

  21. Brunei, C., Lounis, B., Tamarat, P., and Orrit, M. (1999) Triggered source of single photons based on controlled single molecule fluorescence, Phys. Rev. Lett. 83, 2722–2725.

    Article  ADS  Google Scholar 

  22. Hong, C. K. and Mandel, L. (1986) Experimental realisation of a localized one-photon state, Phys. Rev. Lett. 56, 58–60.

    Article  ADS  Google Scholar 

  23. Kim, J., Benson, O., Kan, H., and Yamamoto, Y. (1999) Single-photon turnstile device, Nature 397, 500–503.

    Article  ADS  Google Scholar 

  24. Varcoe, B. T. H., Brattke, S., Weidinger, M., and Walther, H. (2000) Preparing pure photon number states of the radiation field, Nature 403, 743–746.

    Article  ADS  Google Scholar 

  25. Meyer, G. M., Briegel, H.-J., and Walther, H. (1997) Ion-trap laser, Europhys. Lett. 37, 317–322.

    Article  ADS  Google Scholar 

  26. Law, C. K. and Eberly, J. H. (1996) Arbitrary control of a quantum electromagnetic field, Phys. Rev. Lett. 76, 1055–1058; Law, C. K. and Kimble, H. J. (1997) Deterministic generation of a bit-stream of single-photon pulses, J. Mod. Opt. 44, 2067–2074; Domokos, P., Brune, M., Raimond, J. M., and Haroche, S. (1998) Photon-number-state generation with a single two-level atom in a cavity: a proposal, Eur. Phys. J. D 1, 1–4.

    Article  ADS  Google Scholar 

  27. See Kuhn, A., Hennrich, M., Rempe, G. (2002) Deterministic single-photon source for distributed quantum networking Phys. Rev. Lett. 89, 067901 and references therein, e.g. Kuhn, A., Hennrich, M., Bondo, T., and Rempe, G. (1999) Controlled generation of single photons from a strongly coupled atom-cavity system, Appl. Phys B 69, 373–377; Pinkse, P. W. H., Fischer, T., Maunz, P., and Rempe, G. (2000) Trapping an atom with single photons, Nature 404, 365–368; Ye, J., Vernooy, D. W, and Kimble, H. J. (2000) Trapping of single atoms in cavity QED, Phys. Rev. Lett. 83, 4987–4990; Hood, C. J., Lynn, T. W, Doherty, A. C., Parkins, A. S., and Kimble, H. J. (2000) The atom-cavity microscope: single atoms bound in orbit by single photons, Science 287, 1447–1453.

    Article  ADS  Google Scholar 

  28. See, for example, Scully, M.O. and Zubairy, M. S. (1997) Quantum Optics (Cambridge University Press.

    Google Scholar 

  29. Rempe, G., Schmidt-Kaler, F., and Walther, H. (1990) Observation of sub-Poissonian photon statistics in a micromaser, Phys. Rev. Lett. 64, 2783–2786.

    Article  ADS  Google Scholar 

  30. Krause, J., Scully, M.O., and Walther, H. (1987) State reduction and |!!n〉-state preparation in a high-Q micromaser, Phys. Rev. A 36, 4547–4550.

    Article  ADS  Google Scholar 

  31. A detailed account of the simulations used in this paper and a comparison with ideal micromaser theory are given in Brattke, S., Englert, B.-G., Varcoe, B. T. H., and Walther, H. (2000) Fock states in a cyclically pumped one-atom maser, J. Mod. Opt. 47, 2857–2867.

    MathSciNet  ADS  MATH  Google Scholar 

  32. Brattke, S., et al. (2001) Preparing Fock states in the micromaser, Optics Express 8, 131–144.

    Article  ADS  Google Scholar 

  33. Brattke, S., Varcoe, B. T. H., and Walther, H. (2001) Generation of photon number states on demand via cavity quantum electrodynamics, Phys. Rev. Lett. 86, 3534–3537.

    Article  ADS  Google Scholar 

  34. Proposals such as teleportation of an atomic state using multiple atomic beams would be substantially enhanced if atoms arrived on demand rather than by chance. See, for example, Davidovich, L., Zagury, M., Brune, M., Raimond, J. M., and Haroche, S. (1994) Teleportation of an atomic state between two cavities using nonlocal microwave fields, Phys. Rev. A 50, R895–R898; Cirac, J. I. and Parkins, A S. (1994) Schemes for atomic-state teleportation, Phys. Rev. A 50, R4441-R4444; Moussa, M. H. Y. (1997) Teleportation with identity interchange of quantum states, Phys. Rev. A 55, R3287-R3290.

    Article  ADS  Google Scholar 

  35. Lougowski, P., Solano, E., Zhang, Z.M., Walther, H., Mack, H., and Schleich, W.P. (2002) Fresnel transform: an operational definition of the Wigner function, quant-ph/0206083vl.

    Google Scholar 

  36. Hennrich, M., Legero, T., Kuhn, A., and Rempe, G. (2000) Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity, Phys. Rev. Lett. 85, 4872–4875.

    Article  ADS  Google Scholar 

  37. Pellizzari, T., Gardiner, S. A., Cirac, J. I., and Zoller, P. (1995) Decoherence, continuous observation, and quantum computing: a cavity QED model, Phys. Rev. Lett. 75, 3788–3791.

    Article  ADS  Google Scholar 

  38. Zheng, S. B. and Guo, G. C. (2000) Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85, 2392–2395.

    Article  ADS  Google Scholar 

  39. Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W., and Walther, H. (2001) A single ion as a nanoscopic probe of an optical field, Nature 414, 49–52.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Walther, H. (2003). Cavity Quantum Electrodynamics with Single Atoms. In: Shumovsky, A.S., Rupasov, V.I. (eds) Quantum Communication and Information Technologies. NATO Science Series, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0171-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0171-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1453-6

  • Online ISBN: 978-94-010-0171-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics