Skip to main content

Lecture Notes on Quantum-Nondemolition Measurements in Optics

  • Conference paper
Quantum Communication and Information Technologies

Part of the book series: NATO Science Series ((NAII,volume 113))

  • 588 Accesses

Abstract

A general overview of quantum nondemolition measurements is provided and illustrated with a few examples from quantum optics. Also given are basic principles and theoretical fundament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quantum Theory and Measurement, Eds. J. A. Wheeler and W. H. Zurek (Princeton University, Princeton, NJ, 1983).

    Google Scholar 

  2. One may also have a goal oriented more to a preparation rather than to measurement. Here the repeated measurements can be used in a feedback loop, where the variable of interest is measured and then corrected towards a desirable value by an active device. Such cases as well as any other active intervention into the quantum system are left beyond the scope of this lecture.

    Google Scholar 

  3. V. B. Braginsky and Y. I. Vorontsov, “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique” Usp. Fiz. Nauk 114, 41–53 (1974) [Sov. Phys. Usp. 17, 644–650 (1975)]; V. B. Braginsky, Y. I. Vorontsov, and F. Y. Khalili “Quantum singularities of a ponderomotive meter of electromagnetic energy” Zh. Eksp. Teor. Fiz. 73, 1340–1343 (1977) [Sov. Phys. JETP 46, 705–706 (1977)].

    Article  Google Scholar 

  4. P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y. Yamamoto, “Quantum solitons in optical fibres”, Nature (London) 365, 307–313 (1993); P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics”, Nature (London) 396, 537–542 (1998); A. Sizmann and G. Leuchs, in “Progress in Optics” vol. XXXIX, ed. by E. Wolf, (Elsevier, NY) 1999, p.373.

    Article  ADS  Google Scholar 

  5. V. B. Braginsky and F. Ya. Khalili, Quantum measurement (Cambridge Univ. Press, 1992).

    Google Scholar 

  6. H. A. Haus, Electromagnetic noise and quantum optical measurements (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  7. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it”, Nature 400, 239–242 (1999).

    Article  ADS  Google Scholar 

  8. B.-G. Englert, N. Sterpi, and H. Walther, “Parity states in the one-atom maser”, Opt. Commun. 100, 526–535 (1993).

    Article  ADS  Google Scholar 

  9. This theoretical treatment is after V.V. Kozlov and J.H. Eberly (unpublished).

    Google Scholar 

  10. L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Dover, New-York, 1987).

    Google Scholar 

  11. M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, N. Zaury, “Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of Schrodinger cat states”, Phys. Rev. A 45, 5193–5214 (1992).

    Article  ADS  Google Scholar 

  12. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field”, Nature (London) 403, 743–746 (2000).

    Article  ADS  Google Scholar 

  13. K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg “Quantum nondemolition measurements of harmonic oscillators” Phys. Rev. Lett. 40, 667–671 (1978); W. G. Unruh “Quantum nondemolition and gravity-wave detection” Phys. Rev. B 19, 2888–2896 (1979); C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principles” Rev. Mod. Phys. 52, 341–392 (1980).

    Article  ADS  Google Scholar 

  14. V. B. Braginsky and F. Ya. Khalili, “Quantum nondemolition measurements: the route from toys to tools”, Rev. Mod. Phys. 68, pp. 1–11 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect”, Phys. Rev. A 32, pp. 2287–2292 (1985).

    Article  ADS  Google Scholar 

  16. P. Carruthers and M. M. Nieto, “Coherent states and the number-phase uncertainty relation”, Phys. Rev. Lett. 14, pp. 387–389 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. The sine operator Eq. (50) is used as a substitute for the phase operator. The definition of the last has a controversial history, see for instance a special issue on this subject in Physica Scripta, 48 (1993), “Quantum phase and phase dependent measurements”, Eds. W. P. Schleich and S. M. Barnett. The sine operator is however a well defined object and fits well the context of our problem. What is equally important, the operator can be measured directly in an optical experiment, see J. W. Noh, A. Fougeres, and L. Mandel, “Measurement of the quantum phase by photon counting”, Phys. Rev. Lett. 67, 1426–1429 (1991).

    Article  ADS  Google Scholar 

  18. V. E. Zakharov and A. B. Shabat, “Exact theory of three-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Physics JETP 34, 62–69 (1972) [Zh. Eksp. Teor. Fiz. 61, 118–134 (1971)].

    MathSciNet  ADS  Google Scholar 

  19. see H. A. Haus, K. Watanabe, and Y. Yamamoto, “Quantum-nondemolition measurement of optical solitons”, J. Opt. Soc. Am. B6, 1138–1148 (1989), for the first proposal of the QND measurements of optical solitons. See also S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton”, Phys. Rev. Lett. 69, 3165–3168 (1992), for the first QND experiment with optical solitons.

    ADS  Google Scholar 

  20. V. V. Kozlov and D. A. Ivanov, “Accurate quantum nondemolition measurements of optical solitons”, Phys. Rev. A 65, 023812 (2002).

    Article  ADS  Google Scholar 

  21. D. J. Kaup, J. Math. Phys. 16, 2036 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  22. H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach”, J. Opt. Soc. Am. B7, 386–392 (1990).

    ADS  Google Scholar 

  23. P.D. Drummond, J. Breslin, R.M. Shelby, “Quantum-nondemolition measurements with coherent soliton probes”, Phys. Rev. Lett. 73, 2837–2840 (1994).

    Article  ADS  Google Scholar 

  24. V. V. Kozlov and A. B. Matsko, “Second-quantized models for optical solitons in nonlinear fibers: Equal-time versus equal-space commutation relations”, Phys. Rev. A 62, 033811 (2000).

    Article  ADS  Google Scholar 

  25. V. V. Kozlov and A. B. Matsko, “Einstein-Podolsky-Rosen paradox with quantum solitons in optical fibers”, Europhys. Lett., 54, 592–598 (2001).

    Article  ADS  Google Scholar 

  26. V. V. Kozlov and M. Freyberger, “High-bit-rate quantum communication”, Opt. Commun. 206, 287–294 (2002).

    Article  ADS  Google Scholar 

  27. Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit”, Phys. Rev. Lett. 89, 167901 (2002).

    Article  ADS  Google Scholar 

  28. J.-M. Courty, S. Spälter, F. König, A. Sizmann, and G. Leuchs, “Noise-free quantum-nondemolition measurement using optical solitons”, Phys. Rev. A 58, 1501 (1998).

    Article  ADS  Google Scholar 

  29. V. V. Kozlov and A. B. Matsko, “Cancellation of the Gordon-Haus effect in optical transmission system with resonant medium”, J. Opt. Soc. Am. B. 16, 519–522 (1999).

    Article  ADS  Google Scholar 

  30. A. B. Matsko, V. V. Kozlov, and M. O. Scully, “Back-action cancellation in quantum nondemolition measurement of optical solitons”, Phys. Rev. Lett. 82, 3244–3247 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kozlov, V.V. (2003). Lecture Notes on Quantum-Nondemolition Measurements in Optics. In: Shumovsky, A.S., Rupasov, V.I. (eds) Quantum Communication and Information Technologies. NATO Science Series, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0171-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0171-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1453-6

  • Online ISBN: 978-94-010-0171-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics