Lecture Notes on Quantum-Nondemolition Measurements in Optics

  • Victor V. Kozlov
Conference paper
Part of the NATO Science Series book series (NAII, volume 113)

Abstract

A general overview of quantum nondemolition measurements is provided and illustrated with a few examples from quantum optics. Also given are basic principles and theoretical fundament.

Keywords

Microwave Soliton Assure Expense Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Quantum Theory and Measurement, Eds. J. A. Wheeler and W. H. Zurek (Princeton University, Princeton, NJ, 1983).Google Scholar
  2. [2]
    One may also have a goal oriented more to a preparation rather than to measurement. Here the repeated measurements can be used in a feedback loop, where the variable of interest is measured and then corrected towards a desirable value by an active device. Such cases as well as any other active intervention into the quantum system are left beyond the scope of this lecture.Google Scholar
  3. [3]
    V. B. Braginsky and Y. I. Vorontsov, “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique” Usp. Fiz. Nauk 114, 41–53 (1974) [Sov. Phys. Usp. 17, 644–650 (1975)]; V. B. Braginsky, Y. I. Vorontsov, and F. Y. Khalili “Quantum singularities of a ponderomotive meter of electromagnetic energy” Zh. Eksp. Teor. Fiz. 73, 1340–1343 (1977) [Sov. Phys. JETP 46, 705–706 (1977)].CrossRefGoogle Scholar
  4. [4]
    P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y. Yamamoto, “Quantum solitons in optical fibres”, Nature (London) 365, 307–313 (1993); P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics”, Nature (London) 396, 537–542 (1998); A. Sizmann and G. Leuchs, in “Progress in Optics” vol. XXXIX, ed. by E. Wolf, (Elsevier, NY) 1999, p.373.ADSCrossRefGoogle Scholar
  5. [5]
    V. B. Braginsky and F. Ya. Khalili, Quantum measurement (Cambridge Univ. Press, 1992).Google Scholar
  6. [6]
    H. A. Haus, Electromagnetic noise and quantum optical measurements (Springer, Berlin, 2000).MATHCrossRefGoogle Scholar
  7. [7]
    G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it”, Nature 400, 239–242 (1999).ADSCrossRefGoogle Scholar
  8. [8]
    B.-G. Englert, N. Sterpi, and H. Walther, “Parity states in the one-atom maser”, Opt. Commun. 100, 526–535 (1993).ADSCrossRefGoogle Scholar
  9. [9]
    This theoretical treatment is after V.V. Kozlov and J.H. Eberly (unpublished).Google Scholar
  10. [10]
    L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Dover, New-York, 1987).Google Scholar
  11. [11]
    M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, N. Zaury, “Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of Schrodinger cat states”, Phys. Rev. A 45, 5193–5214 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field”, Nature (London) 403, 743–746 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg “Quantum nondemolition measurements of harmonic oscillators” Phys. Rev. Lett. 40, 667–671 (1978); W. G. Unruh “Quantum nondemolition and gravity-wave detection” Phys. Rev. B 19, 2888–2896 (1979); C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principles” Rev. Mod. Phys. 52, 341–392 (1980).ADSCrossRefGoogle Scholar
  14. [14]
    V. B. Braginsky and F. Ya. Khalili, “Quantum nondemolition measurements: the route from toys to tools”, Rev. Mod. Phys. 68, pp. 1–11 (1996).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Imoto, H. A. Haus, and Y. Yamamoto, “Quantum nondemolition measurement of the photon number via the optical Kerr effect”, Phys. Rev. A 32, pp. 2287–2292 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    P. Carruthers and M. M. Nieto, “Coherent states and the number-phase uncertainty relation”, Phys. Rev. Lett. 14, pp. 387–389 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    The sine operator Eq. (50) is used as a substitute for the phase operator. The definition of the last has a controversial history, see for instance a special issue on this subject in Physica Scripta, 48 (1993), “Quantum phase and phase dependent measurements”, Eds. W. P. Schleich and S. M. Barnett. The sine operator is however a well defined object and fits well the context of our problem. What is equally important, the operator can be measured directly in an optical experiment, see J. W. Noh, A. Fougeres, and L. Mandel, “Measurement of the quantum phase by photon counting”, Phys. Rev. Lett. 67, 1426–1429 (1991).ADSCrossRefGoogle Scholar
  18. [18]
    V. E. Zakharov and A. B. Shabat, “Exact theory of three-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Physics JETP 34, 62–69 (1972) [Zh. Eksp. Teor. Fiz. 61, 118–134 (1971)].MathSciNetADSGoogle Scholar
  19. [19]
    see H. A. Haus, K. Watanabe, and Y. Yamamoto, “Quantum-nondemolition measurement of optical solitons”, J. Opt. Soc. Am. B6, 1138–1148 (1989), for the first proposal of the QND measurements of optical solitons. See also S. R. Friberg, S. Machida, and Y. Yamamoto, “Quantum-nondemolition measurement of the photon number of an optical soliton”, Phys. Rev. Lett. 69, 3165–3168 (1992), for the first QND experiment with optical solitons.ADSGoogle Scholar
  20. [20]
    V. V. Kozlov and D. A. Ivanov, “Accurate quantum nondemolition measurements of optical solitons”, Phys. Rev. A 65, 023812 (2002).ADSCrossRefGoogle Scholar
  21. [21]
    D. J. Kaup, J. Math. Phys. 16, 2036 (1975).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach”, J. Opt. Soc. Am. B7, 386–392 (1990).ADSGoogle Scholar
  23. [23]
    P.D. Drummond, J. Breslin, R.M. Shelby, “Quantum-nondemolition measurements with coherent soliton probes”, Phys. Rev. Lett. 73, 2837–2840 (1994).ADSCrossRefGoogle Scholar
  24. [24]
    V. V. Kozlov and A. B. Matsko, “Second-quantized models for optical solitons in nonlinear fibers: Equal-time versus equal-space commutation relations”, Phys. Rev. A 62, 033811 (2000).ADSCrossRefGoogle Scholar
  25. [25]
    V. V. Kozlov and A. B. Matsko, “Einstein-Podolsky-Rosen paradox with quantum solitons in optical fibers”, Europhys. Lett., 54, 592–598 (2001).ADSCrossRefGoogle Scholar
  26. [26]
    V. V. Kozlov and M. Freyberger, “High-bit-rate quantum communication”, Opt. Commun. 206, 287–294 (2002).ADSCrossRefGoogle Scholar
  27. [27]
    Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit”, Phys. Rev. Lett. 89, 167901 (2002).ADSCrossRefGoogle Scholar
  28. [28]
    J.-M. Courty, S. Spälter, F. König, A. Sizmann, and G. Leuchs, “Noise-free quantum-nondemolition measurement using optical solitons”, Phys. Rev. A 58, 1501 (1998).ADSCrossRefGoogle Scholar
  29. [29]
    V. V. Kozlov and A. B. Matsko, “Cancellation of the Gordon-Haus effect in optical transmission system with resonant medium”, J. Opt. Soc. Am. B. 16, 519–522 (1999).ADSCrossRefGoogle Scholar
  30. [30]
    A. B. Matsko, V. V. Kozlov, and M. O. Scully, “Back-action cancellation in quantum nondemolition measurement of optical solitons”, Phys. Rev. Lett. 82, 3244–3247 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Victor V. Kozlov
    • 1
    • 2
  1. 1.Abteilung für QuantenphysikUniversität UlmUlmGermany
  2. 2.Fock Institute of PhysicsSt.-Petersburg UniversityPetrodvoretzRussia

Personalised recommendations