Skip to main content

An Introduction to Quantum Imaging

  • Conference paper
  • 579 Accesses

Part of the book series: NATO Science Series ((NAII,volume 113))

Abstract

In the field of quantum imaging one takes advantage of the quantum aspects of light and of the intrinsic parallelism of optical signals to develops new techniques in image processing and parallel processing at the quantum level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality be considered Complete? Phys.Rev. 47, 777–780.

    Article  ADS  MATH  Google Scholar 

  2. Kolobov, M.I. and Sokolov, I.V. (1989) Spatial behavior of squeezed states of light and quantum noise in optical images. Sov. Phys JETP 96, 1945–1957

    Google Scholar 

  3. Kolobov, M.I. and Sokolov, I.V. (1989) Squeezed states of light and noise-free optical images. Phys.Lett. A 140, 101–104

    Article  ADS  Google Scholar 

  4. Kolobov, M.I., Sokolov, I.V. (1991) Multimode squeezing, antibunching in space and noise-free optical images. Europhys. Lett. 15, 271–276.

    Article  ADS  Google Scholar 

  5. Kolobov, M.I. (1999), The spatial behavior of nonclassical light. Rev. Mod. Phys. 71, 1539–1589.

    Article  ADS  Google Scholar 

  6. Lugiato, L.A. and Gatti, A. (1993), Spatial structure of a squeezed vacuum. Phys. Rev. Lett. 70, 3868–3871

    Article  ADS  Google Scholar 

  7. Gatti, A. and Lugiato, L.A. (1995), Quantum images and critical fluctuations in the optical parametric oscillator below threshold. Phys. Rev. A 52, 1675–1690

    Article  ADS  Google Scholar 

  8. Lugiato, L.A., Brambilla, M. and Gatti, A. (1999), Optical Pattern Formation, in Advances in Atomic, Molecular and Optical Physics, vol. 40, Academic Press, Boston pp. 229–306

    Google Scholar 

  9. Lugiato, L.A. and Grangier, Ph. (1997), Improving quantum-noise reduction with spatially multimode squeezed light. J. Opt. Soc. Am. B 14, 225–231.

    Article  ADS  Google Scholar 

  10. Gatti, A., Brambilla, E., Lugiato, L.A. and Kolobov, M.I. (1999), Quantum Entangled Images. Phys. Rev. Lett. 83, 1763–1766.

    Article  ADS  Google Scholar 

  11. Brambilla, E., Gatti, A., Lugiato, L.A. and Kolobov, M.I. (2001), Quantum structures in traveling-wave spontaneous down conversion Eur. Phys. J. D 15, 127–135.

    Article  ADS  Google Scholar 

  12. Navez, P., Brambilla, E., Gatti, A. and Lugiato, L.A. (2001), Spatial entanglement of twin quantum images. Phys. Rev. A. 65, 13813–13823.

    Article  Google Scholar 

  13. Devaud, F. and Lantz, E. (2000), Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal. Eur. Phys. J. D 8, 117–124

    Article  ADS  Google Scholar 

  14. Lantz, E. and Devaud, F. (2001), Numerical simulation of spatial fluctuations in parametric image amplification. Eur. Phys. J. D 17, 93–98.

    Article  ADS  Google Scholar 

  15. Kolobov, M.I. and Kumar, P. (1993), Sub-shot-noise microscopy: imaging of faint phase objects with squeezed light. Opt. Lett. 18, 849–851.

    Article  ADS  Google Scholar 

  16. Klyshko, D.N. (1988) Photons and Non-Linear Optics Taylor and Francis.

    Google Scholar 

  17. Belinskii, A.V. and Klyshko, D.N. (1994), Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. Sov. Phys. JETP bf 78, 259–262.

    Google Scholar 

  18. Ribeiro, P.H.S., Padua, S., Machado da Silva, J.C., Barbosa, G.A. (1994), Controlling the degree of visibility of Young’s fringes with photon coincidence measurements. Phys. Rev. A 49, 4176–4179.

    Google Scholar 

  19. Strekalov, D.V, Sergienko, A.V., Klyshko, D.N. and Shih, Y.H. (1995), Observation of Two-Photon “Ghost” Interference and Diffraction Phys. Rev. Lett 74, 3600–3603.

    Article  ADS  Google Scholar 

  20. Pittman, T.B., Sergienko, A.V., Klyshko, D.N. and Shih, Y.H. (1995), Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432.

    Article  ADS  Google Scholar 

  21. Zeilinger, A. (1999) Experiment and the foundations of quantum physics Rev. Mod. Phys. 71, S288–S297.

    Article  Google Scholar 

  22. Abouraddy, A.F., Saleh, B.E.A., Sergienko, A.V. and Teich, M.C. (2001), Role of Entanglement in Two-Photon Imaging. Phys. Rev. Lett. 87, 123602–123605

    Article  ADS  Google Scholar 

  23. Abouraddy, A.F., Saleh, B.E.A., Sergienko, A.V. and Teich, M.C. (2002), Entangled-photon Fourier optics. J. Opt. Soc. Am. B 19, 1174–1184.

    Article  ADS  Google Scholar 

  24. Abouraddy, A.F., Saleh, B.E.A., Sergienko, A.V. and Teich, M.C. (2001), Quantum holography. Opt. Express 9, 498–503.

    Article  ADS  Google Scholar 

  25. Gatti, A., Brambilla, E and Lugiato, L.A., Entangled Imaging and wave-particle duality in the macroscopic realm, submitted for publication.

    Google Scholar 

  26. Bennink, R.S., Bentley, S.J. and Boyd, R.W. (2002), “Two-Photon” Coincidence Imaging with a Classical Source. Phys. Rev. Lett. 89, 113601–113605.

    Article  ADS  Google Scholar 

  27. Gatti, A., Brambilla, E., Lugiato, L.A. and Kolobov, M.I. (2000), Quantum aspects of imaging. J. Opt. B: Quantum Semiclass. Opt. 2, 196–203.

    Article  ADS  Google Scholar 

  28. Caves, C.M. (1982), Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839.

    Article  ADS  Google Scholar 

  29. Kolobov, M.I. and Lugiato, L.A. (1995), Noiseless amplification of optical images. Phys Rev. A 52, 4930–4940.

    Article  ADS  Google Scholar 

  30. Sokolov, I.V., Kolobov, M.I. and Lugiato, L.A. (1998), Quantum fluctuations in traveling-wave amplification of optical images. Phys. Rev. A 60, 2420–2430.

    Article  ADS  Google Scholar 

  31. Choi, S.-K., Vasilyev, M. and Kumar, P. (1999), Noiseless Optical Amplification of Images. Phys.Rev. Lett. 83, 1938–1941.

    Article  ADS  Google Scholar 

  32. Fabre, C., Fouet, J.B., and Maitre, A. (2000), Quantum limits in the measurement of very small displacements in optical images. Opt. Lett. 25, 76–78.

    Article  ADS  Google Scholar 

  33. Treps, N. (2001), Effets quantiques dans les images optiques, doctoral thesis at Universite’ Paris VI.

    Google Scholar 

  34. Fabre C. private communication.

    Google Scholar 

  35. Kolobov, M.I. and Fabre, C. (2000), Quantum Limits on Optical Resolution. Phys. Rev.Lett. 85, 3789–3792.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lugiato, L.A., Gatti, A., Brambilla, E. (2003). An Introduction to Quantum Imaging. In: Shumovsky, A.S., Rupasov, V.I. (eds) Quantum Communication and Information Technologies. NATO Science Series, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0171-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0171-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1453-6

  • Online ISBN: 978-94-010-0171-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics